КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМ. АЛЬ-ФАРАБИ Факультет географии и природопользования Кафедра ЮНЕСКО по устойчивому развитию

КРАТКОЕ СОДЕРЖАНИЕ ЛЕКЦИИ по дисциплине: PE2209 «Промышленная экология»

Весенний семестр 2022-2023 уч. год по образовательной программе «Экология (6В05202)»

Содержание

- 1. Введение: Промышленная экология научная основа рационального природопользования
- 2. Сырьевые ресурсы химико-технологической системы
- 3. Загрязнение атмосферного воздуха при разработке месторождений горнодобывающей промышленности
- 4. Выдача из подземных выработок рудничного воздуха
- 5. Загрязнение вод в процессе разработки месторождений горно-добывающей промышленности
- 6. Нарушение земной поверхности при разработке месторождений горнодобывающей промышленности
- 7. Выбросы основных технологических процессов от нефтедобывающой промышленности
- 8. Выбросы основных технологических процессов от черной металлургии
- 9. Загрязнения атмосферы и производственные сточные воды машиностроительных предприятий
- 10. Хранение и захоронение отходов АЭС
- 11. Уменьшение загрязнения отходами окружающей природной среды
- 12. Переработка некоторых видов сортируемых отходов: полимерных отходов; утилизация стеклоотходов; утилизация металлов и сплавов
- 13. Принципы создания малоотходных экологически безопасных технологий на примере производств важнейших химических продуктов
- 14. Производство окиси олефинов; лактамов; винилхлорида
- 15. Производство ароматических соединений и описание технологических процессов, используемых в настоящее время

1. Введение: Промышленная экология — научная основа рационального природопользования

Понятие «Промышленная экология» тесно связано (по Н.Ф.Реймерсу) с инженерной экологией и подразумевает рассмотрение последствий воздействия промышленной (инженерной) деятельности на природную среду. Согласно Н.Ф. Реймерсу (1990 г.), промышленная (инженерная) экология это: «...раздел «большой» экологии, рассматривающий воздействие промышленности (иногда всего хозяйства — промышленности, транспорта и сельского хозяйства) — от отдельных предприятий до техносферы — на природу и, наоборот, влияние условий природной среды на функционирование предприятий и их комплексов».

Предметом изучения науки являются эколого-технические системы, объединяющие в своем составе инженерные объекты, природные комплексы и геосистемы. В основу промышленной экологии заложена концепция безотходной технологии, предусматривающая цикличность материальных и энергетических потоков, которая наглядно и эффективно реализована в природе.

По безотходной технологией понимается такой способ производства продукции при котором опасное или вредное техногенное воздействие на окружающую среду не превышает уровня, допустимого санитарногигиеническими нормативами, при этом использование сырья и энергии вцикле: сырьевые ресурсы—производство—потребление—вторичные сырьевые ресурсы производится таким образом, что любое воздействие на окружающую среду не нарушает ее нормального функционирования.

В дисциплине охарактеризованы основные понятия, нормативноправовая база, структура и особенности экологически опасных отраслей промышленности, методы инженерной защиты среды обитания человека.

Цель дисциплины – сформировать у студентов основы знаний по методам и способам инженерной защиты окружающей среды от экологически вредных последствий функционирования промышленности.

Задачи дисциплины:

- изучить экологические проблемы топливно-энергетического комплекса и пути их решения;
- изучить экологические проблемы транспорта и пути их решения;
- изучить особенности природопользования в горнодобывающей промышленности;
- изучить экологические проблемы отдельных отраслей промышленности (в том числе химической, машиностроительной, обрабатывающей и других);
- изучить технические способы защиты атмосферы, гидросферы, почв, природных ландшафтов, растительности и биологических объектов от техногенных загрязнений.

Техносфера (Н.Ф. Реймерс, 1990г.) — часть биосферы, преобразованная людьми с помощью прямого и косвенною воздействия технических средств в целях наилучшего соответствия ее социально-экономическим потребностям человечества. Техносфера представляет собой совокупность искусственных

объектов, созданных целенаправленной деятельностью человека, и природных объектов, измененных этой деятельностью. Совокупность инженернотехнических процессов в земной коре, гидросфере, атмосфере и ближнем Космосе; научных и технических достижений, позволяющих человеку использовать природные ресурсы и изменять состояние среды жизни, а также перестройка биосферы и создание новой планетной оболочки (техносферы), где господствует человечество как геологическая сила. т. е. все. что связано с производственной деятельностью человека, называют техногенезом. Созданные в процессе техногенеза или возникшие как его побочный результат искусственные (техногенные) вещества, включая вышедшую из строя технику, оказывающие определенные воздействия на среду обитания организмов, называют техногенной продукцией.

2. Сырьевые ресурсы химико-технологической системы

Технологий в человеческом обществе существует, по крайней мере, столько же, сколько и разных видов созданных человеком продуктов (а многие продукты имеют и по множеству разных технологий), все это многообразие технологий можно подразделить на три основных класса: физико-механические, химические и биотехнологические. В физико-механических технологиях исходный материал (сырье) в процессе получения продукта меняет форму или агрегатное состояние, но не изменяет своего химического состава (например, технология переработки древесины для производства деревянной мебели). В процессе получения продукта в химических технологиях сырье претерпевает изменения химического состава (например, получение полиэтилена из природного газа). Биотехнологические процессы занимают особое место в природоохранных технологиях, поскольку в основе своей являются экологически чистыми производствами (например, микробиологическая очистка сточных вод предприятий и почв от нефти и нефтепродуктов) (Галактионова, 2002). В основе промышленной экологии лежит концепция технологии», предусматривающей «безотходной материальных потоков. На Общеевропейском совещании по сотрудничеству в области охраны окружающей среды (г. Женева, 1979 г.) было сформулировано понятие «безотходная технология» – «...практическое применение знаний, методов и средств с тем, чтобы в рамках потребностей человека обеспечить наиболее рациональное использование природных ресурсов и энергии и защитить окружающую среду». В настоящее время, особенно за рубежом, термин чистое производство как «...производство, характеризуется непрерывным и полным применением к процессам и продуктам природоохранной стратегии, предотвращающей загрязнение окружающей среды таким образом, чтобы понизить риск для человечества и окружающей среды».

Современная биосфера подвержена разносторонним антропогенным воздействиям, которые осуществлялись на протяжении почти всей человеческой истории, но в течение последних двух столетий они многократно усилились и привели к существенным количественным и качественным изменениям

биосферы. Человеческая цивилизация обусловила появление на планете новой глобальной материальной системы в виде многослойной насыщенной сферы искусственно созданных объектов (Вронский, 1996). Люди активно расширяют свою экологическую нишу, создавая техносферу. Техносфера представляет собой искусственных объектов, созданных целенаправленной совокупность деятельностью человека, и природных объектов, измененных этой деятельностью Хоружая, 2001; Калыгин, 2006). Совокупность технических процессов в земной коре, гидросфере, атмосфере и ближнем Космосе, научных технических достижений, позволяющих И человеку использовать природные ресурсы, а также перестройка биосферы и создание техносферы, где господствует человечество как геологическая сила, т.е. все, что связано с производственной деятельностью человека, называют техногенезом. Созданные в процессе техногенеза или возникшие как его побочный результат искусственные вещества, включая вышедшую из строя технику, оказывающие определенные воздействия на среду обитания организмов, называют техногенной продукцией. Техногенная система – это сложная, искусственно созданная человеком в результате производственной деятельности система, которая находится в контакте с окружающей природной средой (Степановских, 1998; 2003). В техногенных системах (в городах, на промышленных предприятиях) энергообмен резко отличается от процессов, проистекающих в природе. Поток вещества и энергии через производственную систему практически не имеет обратной положительной связи. На входе – это все возрастающее потребление ресурсов и энергии, ведущее к деградации природных систем. На выходе – огромное количество отходов, поступающих в окружающую среду, что является Энтропия техногенных систем имеет главной причиной ее загрязнения. тенденцию к неумолимому росту: возникают аварии, нарушаются управления, усиливается хаос. Для поддержания этих систем в рабочем состоянии требуются все увеличивающиеся энергетические затраты. Рост производства, увеличение населения больших городов ведут к обострению экологической обстановки (Маслов, 2002).

Основными причинами возникновения техногенных опасностей являются: • нерациональное размещение потенциально опасных объектов производственного назначения, хозяйственной и социальной инфраструктуры; • технологическая отсталость производства, низкие темпы внедрения ресурсоэнергосберегающих и других технически совершенных и безопасных технологий; • износ средств производства, достигающий в ряде случаев предаварийного уровня; • увеличение объемов транспортировки, хранения, использования опасных или вредных веществ и материалов; • снижение профессионального уровня работников, культуры труда, уход квалифицированных специалистов из производства, проектно-конструкторской службы, прикладной науки; • низкая ответственность должностных лиц, снижение уровня производственной и технологической дисциплины; • недостаточность контроля за состоянием потенциально опасных объектов; ненадежность системы контроля за опасными или снижение уровня техники безопасности на транспорте, в энергетике, сельском хозяйстве; • отсутствие нормативно-правовой базы страхования техногенных рисков (Петров, Макашев, 2008).

Сырье является одним из основных элементов, определяющих в значительной степени технологию производства, себестоимость и качество продукта. *Сырьем* называют природные материалы, используемые в производстве промышленных продуктов.

Исходными веществами для производства промышленных продуктов, кроме сырья, являются *полупродукты и вторичное сырье*.

Характеристика и запасы сырья

Сырье химической промышленности классифицируют по различным признакам:

- по происхождению минеральное, растительное и животное;
- по химическому составу неорганическое и органическое;
- по агрегатному состоянию твердое, жидкое (нефть, рассолы) и газообразное (воздух, природный газ и газы нефтепереработки);
 - по запасам возобновимое и невозобновимое.

Минеральное сырье делят на рудное (металлическое), нерудное и горючее (органическое).

Рудное минеральное сырье, используемое для получения металлов в технически чистом виде, состоит из природных минералов. Минералы руд содержат в основном оксиды и сульфиды металлов (оксиды железа, сульфиды меди, цинка) и оксиды соединений, составляющих пустую породу (оксиды кремния, алюминия, кальция, магния).

По составу минералов руды бывают окисленными - состоящими из оксидов, сульфидными и самородными.

Руды, в состав которых входят соединения разных металлов, называют полиметаллическими.

Нерудное минеральное сырье разнообразно по химическому составу и либо применяется в естественном состоянии - песок, глина, асбест, слюда и др., либо поступает на химическую переработку - сульфаты, фосфаты, карбонаты, хлориды, алюмосиликаты и т. п.

Горючие минеральные ископаемые - торф, бурые и каменные угли, сланцы, а также нефть и природный газ - относят к органическим соединениям и используют в качестве сырья и источников энергии.

Особенностью минерального сырья является его невозобновляемость, а также неравномерность распределения по поверхности земли и ее недрам.

Растительное и животное сырье - древесина, хлопок, масла и жиры, молоко, кожа, шерсть и т. п. - перерабатывают или в продукты питания (пищевое сырье), или в продукты бытового и промышленного назначения (техническое сырье). Источниками растительного и животного сырья являются ресурсы естественной среды обитания: земельные, лесные, водные. Многие виды растительного и животного сырья перед поступлением в производство сортируют, перебирают и очищают. Коэффициент использования растительного и животного сырья невелик, поэтому задача комплексного и максимального использования этого сырья имеет еще большее значение, чем для минерального.

В химической промышленности широко применяются и такие доступные и

дешевые виды сырья, как вода и воздух.

Невозобновимое сырье не восстанавливается совсем или восстанавливается значительно медленнее, чем идет его использование человеком в обозримый период времени.

Возобновимое сырье — это растительное и животное, некоторое минеральное сырье (например, соли, осаждающиеся в озерах). Темпы расхода этого вида сырья должны соответствовать темпам его потребления, иначе оно станет невозобновимым.

Полупродукты — вещества и материалы, являющиеся исходными в производстве продуктов и полученные из природного сырья в другом производстве.

Вторичное сырье — используемые в производстве вещества и материалы, являющиеся невостребованными в других производствах. Источниками их являются отходы производства и отходы потребления.

Отводы производства - это остатки, которые получают при технологической переработке сырья, материалов или полуфабрикатов в конечные продукты, они не соответствуют требованиям, предъявляемым к готовой продукции, но после предварительной обработки (или без нее) могут быть использованы в другом производстве в качестве сырья.

Отводы потребления — бывшие в употреблении вещества и изделия, восстановление которых экономически не выгодно.

Стоимость сырья в химической промышленности составляет в среднем 60-70 % себестоимости продукта. Решение сырьевой проблемы осуществляется разнообразными путями: приближением источников сырья к производству, т. е. использованием более дешевого местного сырья; переработкой отходов, пылевых и газовых уносов основного производства в новые продукты, непосредственным использованием отходов, предварительным обогащением сырья в целях повышения концентрации полезных компонентов; заменой одного вида сырья другим, более экономичным. Например, переход с каменного угля как основного сырья химической промышленности на нефть и природный газ дал большой экономический эффект. Расчетные данные свидетельствуют, что себестоимость добычи и подготовки нефти в пересчете на единицу условного топлива в 3,5 раза, а природного газа - в 12 раз меньше, чем угля, добытого шахтным способом. Дешевый доступный природный газ и продукты нефтепереработки обеспечивают снижение себестоимости продуктов массового производства: пластических масс, синтетических волокон, каучуков, моющих средств и др. Использование природного газа вместо кокса снижает почти вдвое себестоимость аммиака и, соответственно, уменьшает себестоимость азотных удобрений.

Принципы обогащения сырья

Важное технико-экономическое значение в рациональной переработке сырья имеет использование концентрированного сырья, обогащенного полезными компонентами. Применение концентрированного сырья снижает стоимость последующей химической переработки и, следовательно, стоимость продукта производства и повышает его качество. Такое сырье способствует интенсификации технологического процесса и экономии топлива. Расходы на

транспортировку сырья к месту переработки снижаются пропорционально концентрации ценных компонентов.

Концентрированное сырье получают его *обогащением*. В процессе обогащения отделяют ценные компоненты от примесей, используя различия в их физических, физико-химических и химических свойствах, а также разделяют на компоненты сложные смеси, полиметаллические руды. Методы обогащения разнообразны и принципиально различны для твердого, жидкого и газообразного сырья.

Твердое минеральное сырье предварительно измельчают, далее измельченная масса поступает на обогащение, в результате которого получают концентрат (фракция, обогащенная полезными компонентами) и пустую породу - хвосты. Для твердого сырья чаще всего применяют механические способы обогащения - рассеивание (грохочение), гравитационное разделение, электромагнитную и электростатическую сепарацию, а также физико — химический метод - флотацию.

Рассеивание (грохочение) применяют для разделения твердой породы, содержащей минералы различной прочности и образующей при измельчении зерна разной величины. При последовательном пропускании измельченного сырья через грохоты - металлические сита с отверстиями разных размеров - происходит разделение на фракции, обогащенные определенным минералом.

Гравитационное обогащение (мокрое и сухое) основано на разной скорости падения частиц измельченного материала различной плотности и величины в потоке жидкости или газа или на действии центробежной силы. Чаще всего проводят мокрое обогащение в потоке воды. Центробежное ускорение в гидроциклонах во много раз выше ускорения при осаждении частиц, поэтому они дают более высокую производительность, чем осадительные камеры; соответственно меньше их габариты. Гравитационные способы применяют для обогащения сырья в производствах минеральных солей, силикатных материалов, в металлургии а также при обогащении углей.

Электромагнитное и электростатическое обогащение основано на различиях в магнитной проницаемости или в электрической проводимости компонентов сырья. Эти способы применяют для отделения магнитовосприимчивых частей от немагнитных и электропроводящих от диэлектриков.

Флотация - широко распространенный способ обогащения, применяющийся для разделения полиметаллических сульфидных руд, обогащения каменных углей и многих других минералов. Флотация основана на различии в смачиваемости водой и прилипании частиц обогащаемого минерала к пузырькам пропускаемого через пульпу воздуха. Плотность агрегата минерал - воздух меньше, чем плотность того же объема пульпы, поэтому он всплывает на поверхность. Большинство минералов природных руд мало отличаются по смачиваемости друг от друга. Для их разделения необходимо создать условия неодинаковой смачиваемости водой отдельных компонентов породы, для чего применяют разнообразные химические соединения - флотационные реагенты.

Термическое обогащение твердого сырья основано на различии в плавкости компонентов сырья. Например, нагреванием серосодержащей породы отделяют легкоплавкую жидкую серу от пустой породы, состоящей из более тугоплавких известняков, гипса и др.

Химическое обогащение основано на различии во взаимодействии компонентов сырья с химическими реагентами с последующим выделением образовавшегося соединения осаждением, испарением, плавлением и т. п.

Для выделения ценных компонентов из жидкостей часто избирательное растворение применяют экстракцию -ИХ органических растворителях. При последующей регенерации экстрагента выделяют одновременно и поглощенные вещества.

Газовые смеси разделяют, используя различия компонентов смеси в температурах кипения, растворимости и других свойствах. Разные температуры кипения дают возможность при сжатии и сильном охлаждении последовательно конденсировать отдельные компоненты. Так, из коксового газа, содержащего 53-60 % Н₂, получают газообразный водород, последовательно конденсируя и отделяя содержащиеся в газе углеводороды, оксид углерода, кислород и азот. В других случаях газовую смесь сжижают и затем разделяют на компоненты перегонкой в ректификационных колоннах.

Широкое распространение в промышленности для разделения газовых смесей находят *методы сорбции* - избирательное поглощение компонентов смеси жидкими (абсорбция) или твердыми (адсорбция) веществами. Поглощенные компоненты выделяют (процесс десорбции) нагреванием, обработкой водяным паром и т. п.

Комплексное использование сырья

Сущность комплексного использования заключается в последовательной переработке сырья сложного состава в ценные продукты для наиболее полного использования всех компонентов сырья.

Примером комплексного использования органического сырья является термическая переработка топлива - угля, нефти, сланцев, торфа. Так, при коксовании угля кроме целевого продукта - металлургического кокса - получают коксовый газ и смолу, переработкой которых выделяют сотни ценных веществ: ароматические углеводороды, фенолы, пиридин, аммиак, водород, этилен и др. Применение указанных веществ в качестве продуктов народного хозяйства привело к снижению себестоимости кокса.

Комплексное использование сырья органически связано наиболее прогрессивной экономичной формой организации химического - комбинированием предприятий. Характерным производства примером комбинирования является использование отходов основного производства для вновь организуемых производств. Высокий экономический эффект подобной связи обусловлен возможностью использования дешевого сырья - отходов и совместным ведением общезаводского хозяйства (централизованное подсобное обслуживание, транспорт, складирование материалов и пр.). сокращаются на 60-70 % капиталовложения на общезаводское хозяйство, снижается себестоимость продукции.

Химическая промышленность и ее смежные отрасли наряду с энергетикой и транспортом являются источниками загрязнения окружающей среды. Борьба с загрязнением окружающей среды, в частности с промышленными выбросами, - важнейшая проблема современности. Одним из главных приемов уменьшения, а иногда исключения промышленных выбросов служит полное комплексное использование всех компонентов химического сырья.

Достижения химии и химической технологии обеспечили возможность замены пищевого сырья непищевым и растительного — минеральным для производства технических и бытовых продуктов. Такая замена увеличивает пищевые ресурсы народного потребления, сохраняет лесные богатства, снижает себестоимость продуктов.

Воздух и вода как сырье химической промышленности

Химическая промышленность использует воздух и воду в огромных количествах и для самых разнообразных целей. Это объясняется комплексом ценных свойств воздуха и воды, их доступностью и удобствами применения.

 $Boз \partial yx$ в химической промышленности применяют в основном как сырье или как реагент в технологических процессах, а также для энергетических целей.

Технологическое применение воздуха обусловлено химическим составом атмосферного воздуха; сухой, чистый воздух содержит (объемная доля в %): N_2 - 78,10; O_2 - 20,93; Ar - 0,93; $CO_2 \sim 0,03$ и незначительные количества He, Ne, Kr, Xe, H₂, CH₄, O₃, NO.

Чаще всего используют кислород воздуха в качестве **окислителя**: окислительный обжиг сульфидных руд цветных металлов, серосодержащего сырья при получении диоксида серы в сернокислотном, целлюлозно-бумажном производствах; неполное окисление углеводородов при получении спиртов, альдегидов, кислот и др. Кислород, выделяемый ректификацией жидкого воздуха, в больших количествах расходуют для кислородной плавки металлов, в доменном процессе и т. п.; при ректификации получают также азот и инертный газы, в основном аргон.

Азот используют в качестве **сырья** в производстве синтетического аммиака и других азотсодержащих веществ и как инертный газ. Воздух, применяемый в качестве реагента, подвергается, в зависимости от характера производства, очистке от пыли, влаги и контактных ядов. Для этого воздух пропускают через промывные башни с различными жидкими поглотителями (H_2O , щелочи, этаноламины и др.), мокрые и сухие электрофильтры, аппараты с влагопоглотительными сорбентами и пр.

Энергетическое применение воздуха связано, прежде всего, с использованием кислорода как окислителя для получения тепловой энергии при сжигании различных топлив.

Воздух используется также как хладоагент при охлаждении газов и жидкостей через теплообменные поверхности холодильников или в аппаратах прямого контакта (например, охлаждение воды в градирнях), при грануляции расплавов некоторых соединений (например, аммиачной селитры). В других случаях нагретый воздух используется как теплоноситель для нагрева газов или жидкостей.

В пневматических барботажных смесителях используют сжатый воздух для перемешивания жидкостей и пульпы, в форсунках - для распыления жидкостей в реакторах и топках.

 $Bo\partial a$ обладает универсальными свойствами, благодаря чему находит в народном хозяйстве разнообразное применение как **сырье**, в качестве химического реагента, как **растворитель**, **тепло- и хладоноситель**.

Например, из воды получают водород различными способами, водяной пар в тепловой и атомной энергетике; вода служит реагентом в производстве минеральных кислот, щелочей и оснований, в производстве органических продуктов - спиртов, уксусного альдегида, фенола и других многочисленных реакциях гидратации и гидролиза. Водяной пар и горячая вода имеют значительные преимущества перед другими теплоносителями - высокую теплоемкость, простоту регулирования температуры в зависимости от давления, высокую термическую стойкость и пр., вследствие чего являются уникальными теплоносителями при высоких температурах. Воду используют также как хладоагент для отвода теплоты в экзотермических реакциях, для охлаждения атомных реакторов, где необходима «сверхдистиллированная» вода.

Природные воды содержат различные примеси минерального и органического происхождения. К минеральным примесям относятся газы N_2 , O_2 , CO_2 , H_2S , NH_3 , растворенные в воде соли, кислоты и основания находятся в основном в диссоциированном состоянии в виде катионов и анионов. К органическим примесям относятся коллоидные частицы белковых веществ и гуминовых кислот. Состав и количество примесей зависят главным образом от происхождения воды.

По происхождению различают атмосферные, поверхностные и подземные воды.

Атмосферная вода - вода дождевых и снеговых осадков - характеризуется небольшим содержанием примесей. В этой воде содержатся в основном растворенные газы и почти полностью отсутствуют растворенные соли.

Поверхностные воды - воды речных, озерных и морских водоемов - отличаются разнообразным составом примесей - газы, соли, основания, кислоты. Наибольшим содержанием минеральных примесей отличается морская вода (солесодержание более $10 \, \Gamma/\kappa\Gamma$).

Подземные воды - воды артезианских скважин, колодцев, ключей, гейзеров - характеризуются различным составом растворенных солей, который зависит от состава и структуры почв и горных пород. В подземных водах обычно отсутствуют примеси органического происхождения.

Качество воды определяется ее физическими и химическими характеристиками, такими как прозрачность, цвет, запах, температура, общее солесодержание, жесткость, окисляемость и реакция воды. Эти характеристики показывают наличие или отсутствие тех или иных примесей.

Общее солесодержание характеризует присутствие в воде минеральных и органических примесей.

Для большинства производств основным качественным показателем служит жесткость воды, обусловленная присутствием в воде солей кальция и

магния. Жесткость выражается в миллиграмм-эквивалентах ионов Ca или Mg в 1 кг воды, т. е. за единицу жесткости принимают содержание 20,04 мг/кг ионов кальция или 12,16 мг/кг ионов магния. Различают три вида жесткости: временную, постоянную и общую.

Временная (карбонатная или устранимая) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, которые при кипячении воды переходят в нерастворимые средние или основные соли и выпадают в виде плотного осадка (накипи):

```
Ca(HCO_3)_2 = CaCO_3 + H_2O + CO_2

2Mg(HCO_3)_2 = MgCO_3 \cdot Mg(OH)_2 + 3CO_2 + H_2O
```

Постоянная (некарбонатная, неустранимая) жесткость обусловливается содержанием в воде всех других солей кальция и магния, остающихся при кипячении в растворенном состоянии.

Сумма временной и постоянной жесткости называется *общей* жесткостью. Принята следующая классификация природной воды по значению общей жесткости (h в мг-экв/кг): h < 1,5 - малая жесткость, h = 1,5-3,0 - средняя, h = 3,0-6,0 - повышенная, h = 6,0-12,0 - высокая, h > 12,0 - очень высокая.

Окисляемость воды характеризуется наличием в воде органических примесей и выражается в миллиграммах кислорода, расходуемого на окисление веществ, содержащихся в 1 кг воды.

Активная реакция воды - ее кислотность или щелочность характеризуется концентрацией водородных ионов. Реакция природных вод близка к нейтральной; рН - водородный показатель, равный (-lg $a_{\rm H}^+$), колеблется в пределах 6,8-7,3.

Производства в зависимости от целевого назначения воды предъявляют строго определенные требования к ее качеству, к содержанию примесей в ней; допустимые количества примесей регламентируются соответствующими ГОСТами. Природная вода, поступающая в производство, подвергается очистке различными методами в зависимости от характера примесей и требований, предъявляемых к воде данным производством.

В промышленности в целях экономии расхода воды применяют так называемую оборотную воду, т. е. использованную и возвращенную в производственный цикл.

Промышленная водоподготовка

Промышленная водоподготовка представляет собой комплекс операций, обеспечивающих очистку воды - удаление из нее вредных примесей, находящихся в молекулярно — растворенном, коллоидном и взвешенном состоянии.

Основные операции водоподготовки: очистка от взвешенных примесей *от взвешенных* примесей *от взвешенных случаях* — обессоливание; *нейтрализация*; *дегазация* и *обеззараживание*.

Отстаивание воды проводят в непрерывно действующих отстойных Для достижения бетонированных резервуарах. полного осветления обесцвечивания декантируемую ИЗ отстойников воду подвергают коагуляции. Коагуляция - высокоэффективный процесс разделения гетерогенных систем, в частности, выделения из воды мельчайших глинистых частиц и белковых веществ. Физико-химическая сущность этого процесса состоит в том, что адсорбция коагулянта на поверхности заряженной коллоидной частицы приводит к слипанию отдельных частиц (коагуляции) и образованию осадка. При этом ион-коагулянт должен иметь заряд, противоположный заряду коллоидной частицы. Чем выше заряд иона-коагулянта, тем меньше расход электролита на коагуляцию. Так, природные глинистые коллоидные системы (природные воды) имеют отрицательный заряд, для их коагуляции чаще всего применяют соединения алюминия в виде сульфатов или двойных солей - алюмокалиевых квасцов. Одновременно идет процесс адсорбции на поверхности осадка органических красящих веществ, в результате чего вода обесцвечивается. Количество вносимого в воду коагулянта находится в прямой зависимости от загрязненности воды. Образующийся при коагуляции коллоидный осадок удаляется из воды отстаиванием и фильтрованием.

Фильтрование - наиболее универсальный метод разделения неоднородных систем. В технике фильтрования большое значение имеет развитая поверхность фильтрующего материала.

Умягчение и обессоливание воды состоит в удалении солей кальция, магния и других металлов. В промышленности применяют различные методы умягчения, сущность которых заключается в связывании ионов Ca^{2+} и Mg^{2+} реагентами в нерастворимые и легко удаляемые соединения.

По применяемым реагентам различают способы:

- известковый (гашеная известь);
- содовый (кальцинированная сода);
- натронный (гидроксид натрия) и
- фосфатный (тринатрийфосфат).

Процесс умягчения основывается на следующих реакциях:

- 1) обработке гашеной известью для устранения временной жесткости удаления ионов железа и связывания ${\rm CO}_2$
 - 2) обработке кальцинированной содой для устранения постоянной жесткости
- 3) обработке тринатрийфосфатом для более полного осаждения катионов Ca^{2+} и Mg^{2+}

Полное обессоливание воды может быть достигнуто также путем перегонки воды - дистилляции - на перегонных установках.

Повышение технико-экономического эффекта водоподготовки связано с применением комбинирования нескольких технологических процессов, например коагуляции, умягчения и осветления с помощью современных методов ионного обмена, сорбции, электрокоагуляции и др.

Для современной промышленной водоподготовки значительный интерес представляет возможность применения электрохимических методов, в частности электрокоагуляции. Электрокоагуляция - способ очистки воды в электролизерах с растворимыми электродами - основана на электрохимическом получении гидроксида алюминия, обладающего высокой сорбционной способностью по отношению к вредным примесям.

Водообеспечение промышленных предприятий

Химические производства относятся к водоемким. Большую часть воды

расходуют для охлаждения и конденсации продуктовых потоков. В значительной части технологических процессов воду используют как растворитель или вводят в виде пара. Воду применяют и как реагент химических реакций.

Основные пути улучшения водообеспечения промышленных предприятий следующие:

- разработка новых технологий, характеризующихся сокращением потребляемой воды и образующихся загрязненных стоков либо полным исключением воды из технологических операций;
- создание локальных систем обезвреживания стоков отдельных производств, включающих извлечение из них и утилизацию ценных компонентов, подготовку очищенной воды к повторному использованию;
- организация замкнутых водооборотных систем, включая сбор и использование очищенных сточных вод, паводковых вод и атмосферных осадков с территории предприятий.

Существенное снижение водопотребления достигается при замене водяного охлаждения воздушным. Действующими в отрасли нормами технологического проектирования водяное охлаждение допускается лишь в тех случаях, когда по каким-либо причинам воздушное охлаждение невозможно. Аппараты воздушного охлаждения могут быть использованы вместо градирен для отвода избыточного тепла воды. Градирни открытого типа сложны в эксплуатации, в обычных условиях унос капельной влаги из градирен достигает 0,3 % и более, при этом в районе градирен загрязняются воздушный бассейн и почва. Особенно эффективны закрытые оборотные системы c аппаратами воздушного высокозастывающих продуктов. Воздушное охлаждение позволяет сократить потребность в охлаждающей воде на действующих предприятиях на 60-75 % и, следовательно, объем сточных вод на 25-45 %. Соответственно снижаются потери сырья, основных и побочных продуктов, уменьшаются капитальные затраты и эксплуатационные расходы на водопотребление и водоотведение (канализацию).

Водопотребление снижается также при замене барометрических конденсаторов смешения (для создания вакуума) поверхностными аппаратами. Расход охлаждающей воды при этом сокращается в 3-4 раза, экономится энергия на перекачку воды, уменьшаются газовые выбросы в атмосферу.

Экономии воды способствует комбинирование процессов, так как жесткие связи по сырью между блоками установок позволяют устранить промежуточное охлаждение продуктовых потоков, а избыточное тепло на одном блоке утилизировать на других.

Расход воды снижается при повторно-последовательном использовании охлаждающей воды как на отдельных технологических установках, так и на смежных установках и некоторых объектах общезаводского хозяйства. Особенно эффективно оно в случае предварительной стабилизации свежей и оборотной воды против выпадения и разложения солей жесткости или специальной химической водоочистке свежей воды. Воду при этом можно нагревать до более высоких температур, так как накипь на трубах не образуется, а перед поступлением на градирню предварительно охлаждать с утилизацией тепла для

отопления помещений, теплиц или производства холода. При такой схеме расход воды уменьшается в несколько раз.

С созданием крупных комплексов на нефтехимических предприятиях сооружение локальных систем оборотного водоснабжения, канализации очистки сточных вод экономически выгодно. В этом случае снижаются затраты на биологическую очистку сточных вод, улучшается контроль за их качеством, сокращаются потери продуктов, уменьшается загрязненность окружающей среды. Экономически целесообразна децентрализация оборотного водоснабжения на действующих заводах с подключением к оборотным системам ограниченного технологических установок. При рассредоточении водоснабжения и уменьшении объема циркулирующей воды можно использовать герметизированные напорные системы водооборота и канализации сточных вод.

На ряде предприятий США и Западной Европы предусмотрены раздельные системы канализации: ливневая, хозяйственно-фекальная, условно чистая для ливневых вод и несколько производственных. Это позволяет распределять сточные воды с учетом степени их загрязненности, качества и свойств загрязнителей, выбирать наиболее оптимальные и дешевые методы очистки для возвращения в оборотные системы. Некоторые типы вод, например слабощелочные и слабокислые, целесообразно отводить в одну систему для их взаимной нейтрализации и экономии реагентов.

Сточные воды, содержащие нефтепродукты, не следует смешивать со сточными водами, содержащими вещества, способные образовывать трудно разрушаемые эмульсии, стойкую пену или увеличивать потери от испарения.

Оптимальное решение проблемы предотвращения загрязнения водоемов и уменьшения дефицита воды - создание экономически рациональных замкнутых систем водного хозяйства предприятий.

Необходимость и целесообразность создания замкнутых систем производственного водоснабжения обусловлены тремя основными факторами:

- дефицитом пресной воды. На увеличение дефицита пресной воды влияют не только непрерывный рост водопотребления, но и деградация качества воды природных водоисточников в результате поступления в них сточных вод;
- исчерпанием обезвреживающей (самоочищающей и разбавляющей) способности водоемов, в которые сбрасываются сточные воды;
- экономическими преимуществами по сравнению с очисткой сточных вод до соответствующих нормативов, позволяющих их сброс в открытые водоёмы.

Основные принципы создания замкнутых водооборотных систем

Создание экономически обоснованных замкнутых систем водного хозяйства является весьма трудной задачей. Сложный физико-химический состав сточных вод, разнообразие содержащихся в них соединений и их взаимодействие друг с другом делают невозможным подбор универсальной структуры бессточных схем, пригодных для применения в различных отраслях народного хозяйства.

Вопросом первостепенной важности при создании замкнутых водооборотных систем является разработка научно-обоснованных требований к качеству воды, используемой во всех технологических процессах и операциях.

В подавляющем большинстве технологических операций нет необходимости в использовании воды питьевого качества. Поэтому необходимо оценить допустимые пределы основных показателей качества воды, которые определяются следующими факторами:

- не должно ухудшаться качество получаемого продукта;
- должна обеспечиваться безаварийная работа оборудования; оно не должно разрушаться вследствие коррозии, на стенках не должны появляться отложения и т.д.;
- не влиять на здоровье обслуживающего персонала за счёт изменения токсикологических или эпидемиологических характеристик воды.

Исторически сложилось так, что при разработке технологических схем на качество воды не обращали внимания. Питьевая и даже техническая вода в подавляющем большинстве случаев удовлетворяла технологов, а использованную воду просто сбрасывали в водоёмы и только позднее стали направлять на очистные сооружения.

Общими задачами при разработке замкнутых водооборотных систем для всех отраслей народного хозяйства являются следующие:

- максимальное внедрение воздушного охлаждения вместо водяного: на многих предприятиях на охлаждение расходуется до 70 % всей используемой воды;
- размещение комплекса производств на промышленной площадке таким образом, чтобы было возможно многократно (каскадно) использовать воду в технологических производствах;
- последовательное многократное использование воды в различных или идентичных производствах должно приводить к образованию небольшого объема максимально загрязненных сточных вод, для обезвреживания которых можно подобрать достаточно эффективные (и, как правило, дорогостоящие) методы очистки;
- использование воды для очистки газов только тогда, когда из газов извлекаются и используются ценные компоненты, применение воды для очистки газов от твердых частиц допускается только в случае замкнутого цикла;
- обязательная регенерация отработанных кислот, щелочей и солевых технологических растворов с использованием извлекаемых продуктов в качестве вторичного сырья.

При создании замкнутых водооборотных систем промышленных предприятий водоподготовка и очистка сточных вод должны рассматриваться как единая система. Проектирование замкнутых систем проводится одновременно с проектированием основного производства.

Схемы водообеспечения промышленных предприятий

При прямоточном водообеспечении вся забираемая из водоема вода после использования в технологическом процессе возвращается в водоем за исключением безвозвратных потерь в производстве и потерь со шламом на очистных сооружениях (рис. 8,а).

Схема повторного использования сточных вод после их очистки показана на рис. 8,б. Незагрязненные нагретые сточные воды поступают на охладительные

установки (градирни, охладительные пруды), а затем возвращаются в оборотную систему водообеспечения. Загрязненные сточные воды поступают на очистные сооружения. После очистки часть отработанных сточных вод подают в систему оборотного водообеспечения, если их состав удовлетворяет нормативным требованиям.

Исходя из существующего технического уровня отраслей, повторно используется 92-98 % воды. В отдельных производствах этот показатель достиг 100 %, т.е. воду используют многократно без сброса загрязненных стоков в водоемы, а свежую воду добавляют в связи с естественной убылью (испарение, химическое превращение и др.). Так, на предприятиях нефтеперерабатывающей и нефтехимической промышленности оборотные системы обеспечивают 91 % производственных потребностей в воде.

Однако переход от частичных оборотных систем к полностью замкнутым оборотным системам связан не только с дополнительными капитальными затратами на строительство соответствующих очистных сооружений, но и с решением двух основных задач: устранением минерализации и покрытием потерь оборотной воды

При циркуляции в системе часть воды испаряется в градирнях, с поверхности открытых прудов и очистных сооружений, при удалении шламов и осадков, теряется в результате участия в химических реакциях, подвергается различным физико-химическим воздействиям, в том числе упариванию, в результате чего в ней увеличивается концентрация солей и накипеобразующих соединений. При многократном использовании в воде накапливаются механические взвеси, различные коррозионно-агрессивные соединения и микроорганизмы. Все это вызывает интенсивное отложение накипи и коррозию оборудования, ухудшает теплопередачу. Из-за увеличения содержания в воде солей и других примесей требуется вывод части воды и замена ее свежей. С этой целью осуществляют так называемую подпитку, или продувку системы. Взамен сброшенной из водоема забирают свежую воду. Покрыть потери оборотной воды можно за счет бытовых сточных вод, а также дождевых и паводковых вод после предварительной их подготовки.

При организации оборотного водообеспечения предусматривают методы борьбы с карбонатными отложениями, биологическими обрастаниями, коррозией оборудования, а также методы подготовки подпиточной воды.

Накапливающиеся в оборотной воде соли образуют на теплообменной поверхности так называемые *карбонатные отпожения*, более чем на 50 % состоящие из карбоната кальция. Основные методы снижения отложений:

- 1) обработка охлаждающей воды кислотой (обычно серной) для снижения общей щелочности воды;
- 2) фосфатирование путем введения в воду раствора гексаметафосфата натрия, тормозящего процессы кристаллизации и осаждения карбоната натрия на стенках аппаратуры;
- 3) обработка воды магнитным полем, что вызывает быстрый рост кристаллов карбонатных и других отложений, которые сорбируют на своей поверхности ионы карбонатов кальция и магния, растут и выпадают в виде шлама, легко уносимого

потоком.

оборотном водоснабжении проблема борьбы При возникает с биологическими обрастаниями. Разнообразные живые существа (бактерии), проникая из открытых водоемов в систему оборотного водоснабжения, поселяются на любой твердой поверхности, соприкасающейся с водой, развиваются, образуют поселения, называемые биологическими обрастаниями; сами организмы называются биогентами. Допустимой считается скорость развития биологических обрастаний теплообменных аппаратов и трубопроводов в оборотной воде не выше 0.07 г/(м²-ч), т.е. в течение месяца толщина нарастающего слоя должна быть не более 0,05 мм. Для борьбы с бактериальными биогентами применяют хлор, а для уничтожения водорослей - медный купорос. Дозы и периодичность хлорирования определяют на основе лабораторных исследований оборотной воды. Водоросли развиваются в основном в теплый период года. Поэтому купоросом обрабатывают воду 3-4 раза в месяц в период с апреля по октябрь.

Содержащиеся в оборотной воде соли и другие примеси вызывают коррозию оборудования. Хлориды ускоряют коррозию вследствие увеличения кислотности воды и их разрушающего действия на пассивирующие пленки; сульфаты агрессивно действуют на бетон. Диоксид углерода замедляет образование защитных пленок. Для защиты от коррозии в оборотных системах применяют различные ингибиторы. Процесс коррозии приостанавливают хромат и бихромат калия. Они же замедляют биологические обрастания. Для снижения коррозии воду обрабатывают также фосфатами, которые образуют пленку, изолирующую металл от воды. В отличие от хроматов фосфаты благоприятствуют развитию биологических обрастаний, поэтому эти химикаты иногда применяют совместно. Один из способов защиты металла от коррозии - защитные покрытия смолами, красками, лаками и эмалями, однако они недолговечны и восстановить их можно только во время ремонта.

Для предотвращения и удаления карбонатных отложений и биологических обрастаний систему оборотного водообеспечения систематически очищают механическим способом, гидропневматической промывкой или с помощью химических реагентов.

Таким образом, полностью замкнутая система водообеспечения предполагает постоянный количественный и качественный состав воды, предотвращение коррозии оборудования, загрязнения системы как минеральными, так и биологическими отложениями, отсутствие сброса загрязненных вод в водоемы, ликвидацию сбросов другими способами.

3. Загрязнение атмосферного воздуха при разработке месторождений горно-добывающей промышленности

Горнодобывающая промышленность осуществляет разработку полезных ископаемых и минеральных материалов. Добыча руды ведется в шахтах и открытым способом. Интенсивное развитие отрасли приводит к истощению

природных ресурсов, нарушению естественных процессов, загрязнению окружающей среды и ухудшению экологического состояния региона в целом.

Горнодобывающая промышленность затрагивает все сферы Земли — гидросферу, литосферу, биосферу и атмосферу. Уровень загрязнений растет по мере развития промышленности, при этом принимаемые меры по охране окружающей среды не успевают за темпами роста добычи переработки.

В результате работы горнодобывающих предприятий природные ископаемые изымаются из недр земли, а при открытом способе добычи разрушается и часть поверхности.

При наличии поблизости лесов или пашни малейшие колебания микроклимата приведут к мощным подвижкам в сложившейся местной экологической системе.

Образование депрессионных воронок

Депрессионные воронки появляются вследствие воронкообразного снижения уровня подземных вод в результате их откачки. Разработка месторождений горного сырья сопровождается резким скачком уровня подземных вод, выемкой и перемещением пустых и рудосодержащих пород, а также образованием различных карьеров, пустот, котлованов. По мере снижения уровня воды повышается ее минерализация.

В результате образования таких воронок изменяются течения грунтовых вод, уменьшается питание водоносных горизонтов, из-за чего страдает растительность на прилегающих территориях.

Вынос пустых пород

Во время проведения подземных разработок на поверхности близ шахты складируется пустая порода — образуются так называемые отвалы. Они занимают немалые площади. Происходят отчуждения сельскохозяйственной земли, соседние угодья теряют продуктивность. Воды, стекающие с отвалов, нередко токсичны и уничтожают растительность на прилегающий к стокам территории. Атмосфера загрязняется пылью и газами, выветривающимися с высыхающих отвалов.

Расположенные близко к населенным пунктам, места складирования пустой породы существенно снижают качество жизни местного населения, негативно сказываясь на санитарно-гигиенической обстановке.

Обезвоживание и засоление земель

Обезвоживание в горнодобывающей промышленности — это отделение жидкости от полезных ископаемых. Оно применяется при подготовке месторождений к эксплуатации, для обогащения полезных ископаемых, при добыче нефти и т. д. Обезвоживание изменяет микроклимат прилегающей территории, сказывается на гидрогеологии участка — сдвигаются водоносные горизонты, изменяются течения подземных вод, питающих растительность. Такая вода часто утилизируется путем слива в грунт, что делает почву непригодной для существования растений и животных.

Загрязнение водных ресурсов и обмеление рек

Предприятия по добыче угля и нефти загрязняют поверхностные воды сбросами малоочищенных промышленных сточных вод. Они характеризуются

повышенной соленостью, кислотностью, жесткостью, мутностью, загрязнены частицами пород, органикой, бактериями. Все это, попадая в поверхностные воды, меняет их состав, негативно сказываясь на обитающих в водных ресурсах организмах, чья жизнь может нормально протекать только в узких экологических рамках.

Истощаются запасы подземных вод в ходе осушения месторождений путем обезвоживания. Изменяется распределение подземных и поверхностных вод, происходит отвод русла реки или ручья, водопонижение, что приводит к обмелению некоторых водоемов.

Загрязнение атмосферного воздуха

Добыча горной породы и минеральных ресурсов сопровождается выбросами углекислого газа, пыли, углеводородов за счет использования взрывчатых веществ на месторождениях. После взрывов повышается содержание пыли в воздухе, что влияет на температуру воздуха, осадки, уровень инсоляции территории.

Отвалы пустой породы с горных шахт, особенно в районах добычи угля, склонны к самовозгоранию. При этом выделяется большое количество пепла, вредных газов, химических соединений.

Масштаб воздействия горнодобывающего предприятия на экосистему региона характеризуется количественной оценкой объектов воздействия.

Уровень этого воздействия определяется на основе:

- расчетов рассеивания загрязняющих веществ в атмосфере;
- расчета выбросов и сбросов загрязняющих веществ в атмосферу и водные объекты;
- расчета уровня физических видов воздействия за пределами санитарнозащитной зоны и на населенной территории;
- расчета водопотребления, водного баланса примыкающей зоны.

При оценке качества природной среды и ее трансформации в результате техногенного воздействия рассматриваются следующие основные характеристики:

- качество воды питьевой, хозяйственно-бытовой, технической;
- характеристика основного водотока, используемого в качестве источника водоснабжения для хозяйственных целей, являющегося существенным ландшафтным объектом;
- качество атмосферного воздуха;
- состояние почвы, болот;
- структура лесов и лесной растительности, устойчивость к техногенному воздействию, возможный уровень стабилизации процессов деградации лесов и растительности;
- климатические особенности района;
- состав и популяция рыбных запасов водоемов и водотока.

Горное производство вызывает два вида загрязнений атмосферного воздуха: запыленность и загазованность. Количество выбросов, их объем и вещественный состав определяются источниками загрязнения. Существенная роль в загрязнении воздушного бассейна принадлежит обогатительным фабрикам и цехам

Установлено, что загрязнение воздуха в районе горных предприятий зависит от климатических и горно-геологических условий разработки месторождений полезных ископаемых, параметров горных выработок, отвалов и других техногенных образований, их расположения относительно господствующего направления ветров. При сухом континентальном климате, особенно при сильных ветрах создаются условия для интенсификации поступления в приземные слои атмосферы и перемещения в них пылегазовых загрязнителей. В этих условиях интенсификации пылегазовыделений благоприятствуют: иссушение нарушенных и подверженных эрозии поверхностей разрабатываемых пород и полезных ископаемых, активизация самовозгорания пород и полезных ископаемых как в массиве, так и в разрушенном состоянии. Следует учитывать, что в процессе горения горные породы разрушаются, при этом образуются тонкодисперсные фракции, легко подвергаемые ветровой эрозии. Это способствует еще большему загрязнению токсичными запылению воздуха веществами, его И накапливающимися в виде продуктов горения и окисления.

В зимний период увеличению запыленности способствует низкое естественное содержание влаги в воздухе. В условиях влажного климата при большом количестве осадков, как в летний, так и в зимний период содержание пыли в воздухе значительно уменьшается за счет связывания тонкодисперсных частиц на поверхности техногенных образований и вымывания пыли из воздуха. неорганизованные (рассредоточенные) Выделяются организованные И выбросы (сосредоточенные) выделения или В атмосферу. неорганизованных относятся: выделения, определяемые ветровой эрозией (дефляцией) нарушенных участков земной поверхности, в том числе открытых горных выработок, отвалов, складов, хвосто- и шламохранилищ; химические газовыделения по всей технологической цепи горного производства при экскавации, транспортировании, погрузочнобуровзрывных работах, разгрузочных работах на складах добытого полезного ископаемого и пр. Источники неорганизованных выбросов рассредоточены на относительно больших территориях. Их расположение, параметры (площадь, объемы) могут определяться во времени и пространстве. Ряд источников неорганизованных пылегазовыделений обладает периодичностью действия. Эта периодичность, а также интенсивность пылегазовыделений зависят от природно-климатических условий (скорости ветра, количества и периодичности выпадения атмосферных осадков, температуры воздуха, мощности снежного покрова и пр.), расположения источников пылегазовыделений по отношению к розе ветров. Уже при скорости ветра 2 м/с сухая пыль сдувается с поверхности техногенных образований и переносится на значительные расстояния. Одним из интенсивных источников периодического загрязнения атмосферы действия, определяемого технологическими причинами, является массовый взрыв на карьере. Количество выбрасываемых в атмосферу пыли и газов зависит от объема взрываемых пород и количества взрывчатых веществ. При массовых взрывах образуется пылегазовое облако объемом 15-20 млн м3. Высота подъема выбросов определяется сотнями

метров, достигая 1500-1600 м. Пылегазовое облако распространяется на значительные расстояния от места взрыва. При массовых взрывах в карьерах Криворожского железорудного бассейна концентрация пыли в воздухе на расстоянии 1 -1,5 км в течение часа составляет 6-10 мг/м3, что в 15-20 раз превышает предельно допустимые концентрации для населенных пунктов.

Мероприятия по охране воздушного бассейна. Они могут быть разделены на две группы: ♦ общего характера, способствующие улучшению состояния бассейна в районе горного предприятия; ♦ специальные, непосредственно направленные на предотвращение загрязнения атмосферного первую группу включены: - территориально-планировочные мероприятия, предусматривающие размещение объектов горного производства источников пылегазовыделений с учетом природно-климатических условий местности, прежде всего розы ветров, а также планомерность нарушения и восстановления земель; - мероприятия по уменьшению площадей эродируемых техногенных поверхностей посредством оптимизации параметров техногенных образований: открытых горных выработок, отвалов различного рода, в том числе терриконов, хвостохранилищ, складов минерального сырья и пр.; - рекультивация нарушенных земель для использования их в народном хозяйстве, обеспечивающая предотвращение ветровой эрозии; - утилизация отходов горного производства, минеральных способствующие комплексное использование ресурсов, как площадей эродируемых поверхностей, так и объемов уменьшению пылегазовыделений. Ко второй группе отнесены мероприятия:

- по улучшению качества воздуха непосредственно в зоне горных работ путем предотвращения или снижения пылегазовыделений различными объектами в технологической цепи производства; - по улавливанию, отводу и очистке пылегазовых выделений и выбросов; - межотраслевого характера, например, по улучшению газового баланса отработанных горюче-взрывчатых веществ и т.д. Причем для тех или иных объектов или источников загрязнения атмосферы могут применяться как отдельные средства и способы, так и их комбинации. Для борьбы с эрозией поверхностей уступов отвалов и хвостохранилищ эффективно применяют механические, биологические и физико-химические методы. Анализ известных способов и путей снижения вредного воздействия массовых взрывов на окружающую среду показывает, что все известные технические решения можно условно отнести к пассивным способам защиты окружающей среды при взрывах в карьерах и разделить на следующие три группы: ♦ способы предупреждения образования пылегазового облака (ПГО), ♦ способы подавления ПГО, ♦ способы утилизации ПГО. К первой группе относятся: применение малогазовых типов ВВ и управление действием взрыва, повышение прочности забойки скважин, снижение массы заряда ВВ в скважине, снижение числа взрывных скважин в блоке, снижение величины перебура в скважине, уменьшение диаметра скважины и пр. Во вторую группу входят: гидрозабойка и гидрогелевая забойка скважин, гидроорошение и покрытие взрываемого блока пеной, гидроминное взрывание, подавление ПГО водо-воздушными струями карьерных вентиляторов и др. К способам утилизации (третья группа) следует отнести гидрообеспыливание, пылеулавливание и дегазацию взорванных блоков в карьере. В районах с низкими температурами одним из возможных способов снижения пылеобразования в технологических процессах является применение воды в твердом агрегатном состоянии в виде мелких ледяных кристаллов и снежинок. Механизм пылеулавливания основан на проявлении адгезионных свойств пыли и снежинок. а также на действии квазижидкого слоя ледяных кристаллов. Для этой цели может быть использован также естественный и искусственный снег. Последний помощи стационарных или передвижных Оптимальный расход снега, обеспечивающий снижение запыленности до санитарных норм в течение смены, составляет 2 кг/м3. Для очистки от вредных газообразных примесей воздуха, выбрасываемого в атмосферу из подземных горных выработок, устанавливают специальные очистные устройства. Для снижения газовых выделений при проведении технологических операций осуществляют изоляцию выработанного пространства, дизельную технику заменяют машинами и оборудованием с электроприводом. Перспективной является утилизация метана, выносимого из шахт вентиляционными потоками. В настоящее время складываются два направления, одно ИЗ которых предусматривает отделение газа от общего воздушного потока с доведением газа до необходимой концентрации и последующим сжиганием в топках котельных, а второе - максимальный отбор газа (метана) из угольных пластов и пород с помощью их предварительной дегазации и использование дегазационной смеси в топках котельных при максимальном обеспыливании в местах ее образования. Проводятся мероприятия по предупреждению пожаров на карьерах и разрезах, возгорания пород в отвалах и терриконах, приводящих к выделению в атмосферу значительных объемов газообразных продуктов. К средствам противопожарной отнести: ♦ предварительное увлажнение профилактики ОНЖОМ посредством принудительного нагнетания в них воды или специальных антипирогенных растворов; ♦ полное извлечение из недр полезных ископаемых и горных пород, склонных к самовозгоранию; ♦ отработку вскрытых полезных ископаемых со скоростью, предупреждающей опасность аккумуляции тепла в нарушенном массиве; ♦ взрывание скважин, пробуренных в породах, склонных к быстрому самовозгоранию, до момента развития в них интенсивного пирогенного процесса; ♦ применение пожаробезопасных систем разработки.

4. Выдача из подземных выработок рудничного воздуха

Атмосферный воздух, поступая в подземные выработки шахт и перемещаясь по ним, претерпевает изменения, состоящие в основном в изменении его физического состояния (давление, температуры, скорости) и химического состава, загрязнении механическими примесями (пылью, копотью и т.п.), увеличении или уменьшении влагосодержания.

Изменение давления состоит в его увеличении при движении воздуха вниз по выработкам и понижении при движении вверх. Некоторое влияние на величину давление оказывает работа шахтного вентилятора: при работе вентилятора на всасывание давление несколько понижается, при работе на нагнетание -

повышается. В глубоких шахтах атмосферное давление может составлять 850 мм рт. ст. и более.

Особенность теплового состояния воздуха в подземных выработках по сравнению с наружным воздухом состоит, во-первых, в уменьшении суточных и сезонных колебаний его температуры и, во-вторых, в повышении температуры по сравнению со среднегодовой температурой воздуха на поверхности. С глубиной температура воздуха повышается и в глубоких шахтах при отсутствии охлаждения может составлять 30 градусов и более.

Скорость движения воздуха в подземных выработках в ряде случаев может быть значительна (8 м/сек и более).

Влажность шахтного воздуха повышается вследствие притока в выработки подземных вод и составляет в среднем 80-90%. Особенно высока относительная влажность воздуха при гидравлической добыче и гидротранспортировании полезного ископаемого. В этих случаях она может достигать 100%. Наоборот, при разработке гигроскопичных полезных ископаемых влажность воздуха понижается. Так, в калийных шахтах она может снижаться до 15-60%.

Изменение состава воздуха при его движении по горным выработкам состоят в уменьшении содержания кислорода, увеличении содержания углекислого газа и азота и в появлении ряда газов, не содержащих в земной атмосфере (метан, оксид углерода и др.)

Содержание газов в воздухе характеризуется их концентрацией представляющей собой отношения количеству в объемных или весовых единицах данного газа ко всему количеству (объему или весу) данного газа ко всему (объему или весу) газо-воздушной смеси и называющейся соответственно объемной или весовой концентрацией; это же отношение может быть выражено в процентах. Пересчет концентрации, выраженной в процентах по объему c_{ob} , в весовую концентрацию c_{b} с размерностью me/n производится по формуле

 $c_{\text{в}}{=}0,446\text{Mc}_{\text{об}},$ м2/л, где M- молекулярный вес газа.

Воздух, поступивший с поверхности в горные выработки и претерпевший определенные изменения, называется рудничным воздухом. Наиболее ведения существенное изменения происходят В местах очистных подготовительных работ. По этому некоторой условностью рудничный воздух, заполняющий выработки до забоев очистных и подготовительных выработок, называется свежим, а воздух, заполняющий выработки за этими забоями, -Соответственно этому воздушная струя, отработанным. воздухоподающего ствола к забоям, называется поступающей, а от забоев к воздуховыдающему стволу – исходящей.

Газообильность шахт

Степень изменения химического состава рудничного воздуха по тому или иному компоненту определяет газообильность шахты.

Под газообильностью понимается количество газа, выделяющегося в шахте. Различают абсолютную и относительную газообильность.

Абсолютной газообильностью называется количество газа, выделяющегося в шахте в единицу времени. Размерность абсолютной газообильности L^3T^{-1} (L-

размерность длины, T - и выходящим времени воздуха в шахту равно Q, то абсолютная газообильность шахты будет

$$Q_{\Gamma} = Q \frac{n - n_0}{100}$$

Относительная газообильность — это количество газа, выделяющегося при добыче единицы веса (или объема) полезного ископаемого; ее размерность L^3T^2 M^{-1} (M — размерность массы) или L^3 газа \times L^{-3} полезного ископаемого (например, M^3/T или M^3/M^3). Если известна абсолютная газообильность шахты Q_r , то ее относительная газообильность будет

$$q_{\Gamma} = \frac{Q_{\varepsilon}}{A}$$
,

где A – добыча шахты за время, к которому отнесена газообильность Q_r (за месяц, сутки, час).

Основные составные части рудничного воздуха

Основными составными частями рудничного воздуха, так же как атмосферного, является кислород, углекислый газ и азот. Однако в рудничном воздухе по сравнению с атмосферным содержится меньше кислорода и больше углекислого газа и азота.

Кроме основных составных частей в рудничном воздухе могут присутствовать взрывчатые, ядовитые, радиоактивные и инертные газы и пары.

Кислород (O_2) . Кислород- газ без цвета, вкуса и запаха с удельным весом 1,11* при 0^0 и 760 мм рт. ст. Молекулярный вес кислорода 32, вес 1 л при нормальных условьях 1,428 г. Растворимость кислорода в воде 5% по объему при 0^0 С.

Согласно Правилам безопасности, минимальное содержание кислорода в рудничном воздухе должно быть не менее 20%.

В ряде зарубежных стран минимально допустимой концентрацией кислорода является 19,5-19%.

В условиях подземных работ при снижении содержания кислорода примерно до 17% наступает одышка и сердцебиение, а при 12% атмосфера становится смертельноопасной.

При движении воздуха по горным выработкам содержание в нем уменьшается вследствие окисленных процессов, протекающих в шахте, и поступления в воздушную струю выделяющихся в выработках газов. К окислительным процессам, поглощающим кислород, относится, первую очередь, окисление полезного ископаемого. Особый вид окислительных процессов составляет потребление кислорода живыми организма при дыхании.

При хорошей вентиляции шахт содержание кислорода в выработках, как правило, превышает 20%. Однако невентилируемых выработках при взрывах метана и угольной пыли и при пожарах содержание O_2 в воздухе может снежатся до 1-3%; в такой атмосфере человек теряет через 1-2 мин, а 5-10 мин наступает клиническая смерть.

Углекислый газ (CO_2). Углекислый газ - бесцветный газ со слабоксидым запахом. Удельный вес его 1,52, молекунарный-44. Растворимость в воде при 0^0 С 179,7% по объему. Вес 1 л CO_2 при нормальных условиях 1,96 г.

Углекислый газ химически весьма инертен, не горит и не поддерживает горения. Бензиновые лампы гаснут при содержании CO_2 и неподвижном воздухе 3-4%, в движущемся- 4-5%.

Физиологически углекислый газ слабо ядовит. При небольших концентрациях CO_2 в воздухе (до 3%) он стимулирует дыхание вследствие раздражения дыхательного центра центральной нервной системы насыщенной углекислым газом кровью. При 6% появляется одышка и слабость, при 10% возможно обморочное состояние, при 20-25% -смертельное отравление.

Вследствие большого удельного веса при малых скоростях движение воздуха CO_2 скапливается у почвы выработок. При высоких скоростях он обычно равномерно перемешивается с воздухом.

Основными причинами появления углекислого газа в шахтах и рудниках является процессы окисления древесины и угля, разложения горных пород кислыми рудничными водами и выделение CO_2 из угля и пород. Общая доля этих источников углекислом балансе угольных шахт составляет 90-95%, в рудниках примерно70%. Кроме того, углекислы газ образуется при взрывных работах, рудничных пожарах, взрывах метана и угольной пыли, дыхании людей. Некоторое количество могут поступать с поверхности при горении близ расположенных породах отвалов.

В Подмосковном бассейне около 60% выделяется из выработанных пространств; на добычных участках и в подготовительных выработках выделяется около 30% углекислого газа.

Выделение из горной массы в ряде бассейнов и месторождений проявляются весьма интенсивно.

Различают три вида выделения углекислого газа из горной массы: обыкновенные, суфлярные и внезапные.

Максимально допустимые концентрации CO_2 в шахтах и рудниках: на рабочих местах и в общих исходящих струях участков- 0,5%, в общих исходящих струях крыла, шахты-0,75%, при проведении и восстановлении выработок по завалу-1%.

В хорошо проветриваемых шахтах содержание CO_2 обычно находится в пределах 0,1-0,15%.

Азот(N_2). Азот без цвета, вкуса и запаха. Удельный вес его 0,97, молекулярный вес 28,016, вес 1 Л при нормальных условиях 1,25 г, растворимость 0° С – 2%.

Азот весьма инертен химически. Увеличение содержание N_2 в воздухе оказывает влияние на человека лишь постольку, поскольку при этом уменьшается содержание кислорода.

В рудничный воздух поступает из угля и пород; кроме того, газ этот образуется при взрывных работах и при гниении органических веществ.

В действующих выработках содержание азота колеблется незначительно, в невентилируемых выработках оно может достигать несколько десятков процентов.

Содержание азота в рудничном воздухе Правилами безопасности не нормируется.

Атмосферный воздух состоит из смеси водяных паров и газов с объемным содержанием азота около 79,0%, кислорода 20,95% и углекислого газа 0,04%. Суммарное содержание таких газов, как водород, неон, криптон, гелий и др., не превышает 0,01%.

Струя воздуха, подаваемая с поверхности в шахту для проветривания горных выработок, называется свежей струей. Как правило, поступающий в шахту воздух по составу не отличается от атмосферного. Но в некоторых случаях он загрязняется газообразными и минеральными примесями, если вблизи находятся горящие отвалы пород или ведутся открытые горные разработки, и нуждается в предварительной очистке.

Воздух, заполняющий горные выработки, называется рудничным. По мере движения по выработкам в нем постепенно увеличивается содержание углекислого газа и азота, снижается содержание кислорода, появляются примеси взрывчатых и токсичных газов и пыли.

Поскольку при движении воздуха по горным выработкам он взаимодействует с породами, изменяются его влажность, температура и другие физические свойства.

Струя загрязненного воздуха, направляемая на поверхность, называется исходящей струей.

Основные составные части рудничного воздуха

К и с л о р о д (0_2) — газ без цвета, запаха и вкуса. Удельный вес относительно воздуха 1,11.

Содержание кислорода в рудничном воздухе вследствие окисления угля, лесоматериалов и других, главным образом органических, веществ всегда несколько уменьшается. Резкое уменьшение содержания кислорода может быть вызвано шахтными авариями — взрывами метана и угольной пыли.

Кислород необходим для дыхания. В состоянии покоя человек потребляет в минуту около 350 см³ кислорода, а при тяжелой физической работе около 3500 см⁹1мин. Кислород, попадающий с воздухом в легкие человека, просачивается через стенки альвеол, соединяется с гемоглобином крови и разносится по всему организму. В процессе циркуляции по кровеносным сосудам кровь теряет кислород и обогащается углекислым газом, который через стенки альвеол поступает в легкие и выносится в атмосферу при выдохе. В процессе дыхания человек усваивает из вдыхаемого воздуха только около 4% кислорода, вследствие чего выдыхаемый воздух содержит около 17% кислорода.

Количество используемого человеком при дыхании кислорода обычно несколько больше количества выдыхаемого углекислого газа, но при тяжелой работе или в состоянии сильного возбуждения выделение углекислого газа может стать равным количеству поглощенного кислорода и даже превысить его. Отношение объема выделяемого углекислого газа к объему поглощаемого кислорода называется респираторным коэффициентом.

Содержание кислорода в рудничной атмосфере в соответствии с Правилами безопасности должно быть не менее 20 %. Обычно эта норма выдерживается. Однако на некоторых рудниках наблюдается уменьшение количества кислорода до опасных пределов вследствие выделения в тупиковые нарезные и очистные

выработки из выработанных пространств воздуха, содержащего от 3 до 13% кислорода (Дегтярский рудник). Такое же явление отмечено на ряде рудников Криворожского железорудного бассейна при проходке восстающих, главным образом в тех случаях, когда забой попадает в зону тектонических нарушений.

При уменьшении содержания кислорода в выработке ниже 20% принимаются меры по улучшению проветривания. При 17% люди должны выводиться из забоя, так как пребывание в такой атмосфере становится опасным.

Нормальное снабжение организма кислородом зависит не только от его объемного содержания, но и от парциального давления, которое на уровне моря равно 159 мм рт. ст. Поэтому в рудниках, расположенных в высокогорных областях, где парциальное давление значительно снижается, следует особенно строго следить за содержанием кислорода, так как уже на высоте около 3 км вследствие малого парциального давления у трудящихся может возникнуть горная болезнь, выражающаяся в мышечной слабости, головокружении, носовом кровотечении.

Однако следует отметить, что человеческий организм способен приспосабливаться к различным условиям окружающей среды, и, например, горные жители чувствуют себя нормально даже на высоте 5 км, где парциальное давление кислорода равно всего 80 мм рт. ст. и количество кислорода в единице объема воздуха соответствует 12% О 2 на уровне моря.

Азот (N_2) — газ без цвета, вкуса и запаха, с удельным весом 0,97. Газ безвреден, но при избыточном содержании его в воздухе соответственно уменьшается содержание кислорода, что представляет опасность. Причинами увеличения содержания азота в рудничном воздухе могут быть выделение его в смеси с другими газами из пород и полезного ископаемого, взрывные работы, процессы гниения органических веществ.

До последнего времени азот считался биологически инертным газом, не принимающим никакого участия в дыхании. Однако проф. М. И. Волский установил, что животные и высшие растения усваивают азот атмосферы и что он необходим для их нормальной жизнедеятельности. Внесет ли это открытие чтолибо новое в наши представления о роли азота в рудничной атмосфере., пока сказать трудно.

В крови человека всегда растворено некоторое количество азота, которое увеличивается с повышением атмосферного давления (например, при производстве кессонных работ). При внезапном уменьшении давления может возникнуть так называемая «кессонная болезнь», вызываемая тем, что избыточная часть растворенного азота переходит в газообразное состояние и в крови появляются пузырьки азота. Чтобы избежать этого, переходить из рабочей камеры, находящейся под повышенным давлением, в выработку с нормальным атмосферным давлением следует постепенно, с тем чтобы избыточный азот по мере выделения из крови успевал удаляться с выдыхаемым воздухом.

Углекислый газ (С0₂) бесцветен, обладает слабокислым вкусом, не поддерживает дыхания и горения. Ввиду большого удельного веса (1,52) газ может скапливаться в выработках, пройденных по падению, а также близ почвы

горизонтальных выработок, лишенных деятельного проветривания.

Углекислый газ непрерывно выделяется в рудничную атмосферу из горных пород и полезного ископаемого в готовом виде, а также при медленном окислении угля и разложении карбонатных пород под воздействием кислых шахтных вод. Существенным источником углекислого газа является гниющий крепежный лес. Некоторое количество СО 2 выделяется при дыхании людей, работе двигателей внутреннего сгорания, при взрывных работах.

Как правило, при хорошем проветривании содержание углекислого газа в рудничном воздухе не превышает установленных Правилами безопасности норм, а именно: на рабочих местах и в общих исходящих струях участков — 0,5%, в общих исходящих струях крыльев и шахты в" целом — 0,75% и при проведении и восстановлении выработок по завалу — 1%.

Количество углекислого газа, выделяющегося в шахте в течение суток (в куб. метрах), называется абсолютной углекислотообилъ-ностью. Величина ее определяется в соответствии с особой инструкцией ежегодно в июне —июле по максимальному количеству выделяющегося газа, устанавливаемому из трех наблюдений в течение месяца. Определение производится на основании замеров количества воздуха, идущего на проветривание шахты, и содержания углекислого газа в поступающих и исходящих струях шахты.

Количество углекислого газа, выделяющегося в среднем на 1 m суточной добычи, называется относительной углекислотообильностью.

Рудники по относительной углекислотообильности делятся на четыре категории, при этом количество выделяющегося в течение суток углекислого газа относится к добыче не полезного ископаемого, а всей горной массы.

К первой категории относятся рудники с выделением углекислого газа до 7 ж^3 на 1 ж^3 горной массы, ко второй — от 7 до $14 \text{ м}^3/\text{м}^3$, к третьей — от 14 до $21 \text{ м}^3/\text{м}^3$ и к четвертой — свыше $21 \text{ м}^3/\text{м}^3$.

В тех случаях, когда основные источники образования углекислого газа на данном месторождении хорошо изучены, возможно осуществлять прогноз углекислотообильности шахт еще в период проектирования. Так, например, известно, что в шахтах Подмосковного бассейна, разрабатывающих бурые угли, склонные к окислению с образованием СО₂, около 60% этого газа выделяется с обнаженных поверхностей угольного пласта и из выработанных пространств, а 40% падает на другие источники. В этих шахтах при резком падении барометрического давления поступление газа в выработки из угольного массива, трещины которого заполнены углекислым газом, а также из выработанных пространств резко возрастает, что приводит иногда к превышению санитарных норм содержания этого газа в выработках.

Выделение углекислого газа в шахтах носит характер спокойного равномерного истечения, но в шахтах Нижней Силезии и бассейна Гар (Франция) это выделение происходит в виде внезапных выбросов газа и угольной мелочи, которые могут сопровождаться гибелью людей. Количество выбрасываемого угля в отдельных случаях достигает 4000—5000 т, прилегающие к месту выброса выработки целиком засыпаются углем, а выделяющийся при этом углекислый газ заполняет иногда всю шахту.

Как известно, углекислый газ является возбудителем дыхательного центра, вследствие чего увеличение концентрации $C0_2$ в воздухе вызывает учащение дыхания. Так, при содержании в воздухе 3% CO_2 частота дыхания удваивается, а при 5% — утраивается, возникает одышка.

Несмотря на то, что углекислый газ не ядовит, он нередко служил причиной гибели людей, а в те времена, когда проветривание шахт осуществлялось только естественной тягой, скопление этого газа на нижних горизонтах рудников иногда заставляло прекращать их разработку. Действие углекислого газа на человека еще Узатис в своем курсе горного искусства (1843 г.) описывал так: «Углекислота действует на человека подобно яду, она причиняет быстрый обморок, предшествуемый только небольшой болью в голове и глазах».

По современным представлениям, углекислый газ в больших концентрациях обладает наркотическим действием, раздражающе влияет на слизистые оболочки и кожу. Быстрая гибель человека, находящегося в атмосфере с высоким содержанием $C0_2$, происходит, по мнению гигиенистов, главным образом вследствие недостатка кислорода. Опасность смертельного отравления для человека возникает при содержании 15—20% $C0_2$.

Ядовитые газообразные примеси рудничного воздуха

Окись углерода (CO) — газ без цвета и запаха, удельный вес 0,97. Взрывается при концентрации 12,8—75%, температура воспламенения взрывчатой смеси с воздухом 630—810° С.

Окись углерода образуется при взрывных работах по породам и негорючим полезным ископаемым вследствие разложения взрывчатых веществ, а при взрывании по углю и сланцу, кроме того, выделяется из участвующих во взрыве угольной и сланцевой пыли и мелочи. Поэтому в настоящее время рекомендуется при расчете проветривания считать, что при взрывании по породе образуется 40 л условной окиси углерода на 1 кг взрывчатых веществ, а при взрывании по углю и сланцам — 100 л. При этом под условной окисью углерода понимается собственно СО, образовавшаяся при взрыве ВВ, и двуокись азота, пересчитанная на СО, считая 1 л NO₂ равным 6,5 л СО.

В больших количествах образуется окись углерода при работе дизельных двигателей и двигателей внутреннего сгорания в случае применения для откатки при проведении тоннелей большого сечения, на открытых разработках и в калийных рудниках автотранспорта. Громадные количества окиси углерода образуются при подземных пожарах и взрывах угольной пыли, а также при взрывах гремучего газа, если в этих взрывах принимает некоторое участие и угольная пыль. Особую опасность в этом отношении представляют пожары от самовозгорания углей, так как они часто не сразу обнаруживаются и в выработки начинает поступать окись углерода, которая может вызвать отравление людей.

В буроугольных шахтах комбината Александрияуголь происходит непрерывный процесс образования окиси углерода за счет низкотемпературного окисления угля. При остановках вентиляторов главного проветривания в очистных забоях этих шахт через 30—40 мин, а в подготовительных через 1—1,5 ч содержание окиси углерода обычно превышает санитарную норму, а через 3—4

ч достигает уже 0,01%. Газовая съемка показала, что выделение СО в очистных забоях на шахте № 2—3 этого комбината составляет в среднем 0,008 м $^{\Gamma}$ /т, а на шахте" № 3-бис 0,0055 м 3 /т. В подготовительных выработках газовыделение составляет на шахте № 2—3 в среднем 0,002 м 3 /мин на километр выработки, а на шахте № 3-бис 0,0014 м 3 /мин.

Отравляющее действие окиси углерода объясняется тем, что она значительно легче кислорода соединяется с гемоглобином крови (в 250—300 раз) и вместо оксигемоглобина (гемоглобин + кислород) по телу человека начинает карбоксигемоглобин (гемоглобин циркулировать fокись углерода), поддерживающий жизненных функций организма, что приводит к кислородному голоданию. Степень отравления зависит от количества гемоглобина, связанного с окисью углерода. Если это количество превышает 60%, то человек теряет сознание и может наступить быстрая смерть. В легких случаях при отравлении возникают головная боль, головокружение, боль в висках, тошнота, мышечная слабость. Малые концентрации окиси углерода не вызывают отравления, однако они также оказывают вредное воздействие на человеческий организм.

Предельно допустимая концентрация окиси углерода в подземных выработках составляет 0,03 мг/л, или 0,0024% по объему, однако, в соответствии с Правилами безопасности, допуск рабочих в забой после взрывных работ разрешается при содержании ядовитых газов в пересчете на условную окись углерода, не превышающем 0,008%.

Тяжелое отравление окисью углерода может возникнуть после пребывания человека в течение 0,5—1 ч в атмосфере, содержащей •0,128% СО, а при концентрации 0,4% СО даже кратковременное вдыхание такого воздуха является смертельно опасным.

С е р о в о д о р о д (H_2S) — газ, обладающий резким запахом тухлых яиц, удельный вес 1,19. При концентрациях 4,3—45,5% взрывается. Образуется в шахтах при гниении органических веществ, разложении водой серного колчедана и гипса, горении угольных пластов, при взрывных работах (неполные взрывы) и при горении огнепроводного шнура. Сероводород выделяется из пород и полезного ископаемого совместно с другими газами (из угля, каменной соли, из нефтяных, озокеритовых и серных месторождений), а также из минеральных источников, пересекаемых выработками.

Иногда в трещинах и пустотах скапливается большое количество сероводорода, вследствие чего имели место случаи бурных выделений этого газа при обуривании забоев и при взрывных работах.

Сероводород хорошо растворяется в воде. Так, при нормальных условиях в одном объеме воды растворяется 3,24 объема сероводорода. Поэтому необходимо соблюдать осторожность при передвижении по обводненным выработкам, в воздухе которых ощущается запах сероводорода, так как при возмущении воды газ может выделиться из нее. Эта особенность сероводорода известна давно. Еще И. Шлаттер в своем курсе горного искусства (1760 г.) писал: «Сей род худого воздуха наипаче ложится на воде, в ямах находящейся наподобие синей перепонки. Когда оная вода каким-нибудь случаем перемутится, то вредительные пары подымаются и причиняют опасные следствия».

При больших концентрациях сероводорода в атмосфере выработок он обладает сильным отравляющим действием, так как нарушает внутритканевое дыхание (ткани перестают усваивать кислород). При легком отравлении возникает раздражение слизистых оболочек глаз и верхних дыхательных путей, начинаются головная боль, одышка, сердцебиение. В тяжелых случаях при содержании в воздухе более 0,066% H₂S человек теряет сознание, в дальнейшем возможен отек легких.

Предельно допустимая концентрация сероводорода в воздухе подземных выработок — 0,00066%. Присутствие небольших количеств этого газа в воздухе легко обнаруживается по запаху, а при большой концентрации сероводород производит на органы обоняния анестезирующее действие и по запаху не обнаруживается.

Сернистый газ (SO₂) — тяжелый газ с удельным весом 2,2, обладающий резким запахом и действующий раздражающе на слизистые оболочки глаз и дыхательных путей. Выделяется иногда из пород и полезного ископаемого вместе с другими газами. Известны случаи выделения SO₂ совместно с метаном из углей. В рудниках сернистый газ образуется при ведении взрывных работ по серным и колчеданным рудам в результате сгорания и взрывов серосодержащей пыли, осевшей на стенках шпуров и поверхности выработок вблизи забоя. Борьба с образованием сернистого газа в этих случаях ведется путем тщательной очистки шпуров от буровой мелочи и обильного орошения водой забоя и примыкающей к нему части выработки.

Длительное вдыхание воздуха, содержащего небольшие количества сернистого газа, приводит к заболеванию хроническим гастритом, бронхитом, ларингитом и эмфиземой легких. При высоких содержаниях возникают тяжелый бронхит и спазмы голосовой щели. Предельно допустимая концентрация этого газа равна 0,01 мг/л, или 0,00035% по объему. При вдыхании в течение часа воздуха, содержащего 0,02% сернистого газа, может возникнуть опасное отравление. Присутствие в воздухе сернистого газа даже в незначительных концентрациях обнаруживается по резкому запаху и разъедающему действию, вызывающему слезотечение.

Окислы азота образуются при взрывчатом разложении нитроглицериновых и аммиачно-селитренных взрывчатых веществ.

Наибольшей устойчивостью обладает д в у о к и с ь а з о т а $N0_2$ — газ бурого цвета с удельным весом 1,6. Этот газ легко обнаруживается по цвету и резкому запаху задолго до возникновения опасной концентрации.

Окислы азота хорошо растворяются в воде, вследствие чего при взрывных работах в сырых забоях концентрация их с течением времени даже при неудовлетворительном проветривании снижается. Газ действует раздражающе на слизистые оболочки дыхательных путей, однако его действие проявляется не сразу, а только через 6 ч и более.

При легкой степени отравления появляется кашель, общее недомогание, иногда рвота. Тяжелая степень отравления приводит к отеку легких. Предельно

допустимая концентрация равна 0,004мг/л, или 0,0002% по объему, смертельная опасность возникает при концентрации около 0,02%.

Формальдегид НСНО — бесцветный газ с удельным весом 1,035, обладающий резким удушливым запахом.. Действует на слизистые оболочки и центральную нервную систему и вызывает конъюнктивиты, насморк, бронхиты. Содержится в выхлопных газах бензиновых двигателей и двигателей внутреннего сгорания совместно с окисью углерода и окислами азота. При работе двигателей под нагрузкой содержание альдегидов в выхлопных газах бензиновых двигателей по некоторым данным может достигать 0,137%, а двигателей внутреннего сгорания — 0,031%. Предельно допустимая концентрация равна 0,005 мг/л, или 0,00037% по объему.

Пары а к р о л е и н а . Акролеин — бесцветная легколетучая жидкость с резким запахом пригорелых жиров, образующаяся при разложении дизельного топлива под воздействием высоких температур. Тяжелые пары акролеина с удельным весом около 1,9 встречаются в тех горных выработках, где работают автосамосвалы. Пары акролеина ядовиты и вызывают раздражение слизистых оболочек, головокружение, тошноту. Предельно допустимая концентрация их в воздухе равна 0,002 мг/л, или 0,00008% по объему. Кратковременное пребывание в атмосфере, содержащей 0,014% акролеина, смертельно.

Эманации радиоактивных веществ. Газообразные эманации радиоактивных веществ представлены радоном, тороном и актиноном, которые образуются в процессе альфа-распада радия, тория и актиния.

Эманации накапливаются в порах и трещинах горных пород и вместе с другими газами мигрируют в сторону горных выработок. Период полураспада у радона равен 3,825 суток, у торона 54,5 сек, у актинона 3,92 сек.

Торон и актинон вследствие малого периода полураспада перемещаются по трещинам на короткие расстояния и редко встречаются в горных выработках в опасных концентрациях. Основную опасность представляет радон, который несмотря на малую проникающую способность выделяемых им альфа-лучей приводит к заболеванию организма лучевой болезнью, так как проникает в легкие вместе с вдыхаемым воздухом и растворяется в крови.

Компрессоров необходимо производить только специально предназначенным для этого маслом.

Газы, образующиеся при взрывных работах. При разложении взрывчатых веществ образуется смесь газов, состоящая из углекислого газа, окиси углерода, азота и его окислов — NO, N0₂ и иногда N_2O_5 , а также сернистого газа

 $S0_2$, который образуется главным образом при взрывании по колчеданным рудам. В небольшом количестве может образовываться сероводород, главным образом при горении огнепроводного шнура.

Характеристика перечисленных газов приведена выше. Для получения представления об общей токсичности смеси этих газов их пересчитывают на условную окись углерода, принимая $1 \ n \ NO_2$ эквивалентным $6,5 \ n \ CO$. Общее количество и состав образующихся при взрывании BB ядовитых газов непостоянны и зависят от вида BB, влажности, полноты детонации, минерального состава среды, в которой производится взрыв, и ряда других факторов.

В настоящее время, как указывалось выше, принято считать, что при взрывных работах по рудам и породам при взрыве 1 кг ВВ образуется 40 л условной окиси углерода, а при взрывании по углю 100 л.

Близкое к этому количество газов выделяется и при ведении взрывных работ по горючим сланцам.

5. Загрязнение вод в процессе разработки месторождений горнодобывающей промышленности

Воздействие горного производства на водный бассейн проявляется в изменении водного режима, загрязнении и засорении вод. Изменение водного режима. При строительстве и эксплуатации карьеров и разрезов, рудников и угольных шахт, подземных транспортных и коммунальных туннелей и других сооружений существенные осложнения возникают из-за наличия подземных и поверхностных вод: происходят деформации горных выработок, снижается производительность оборудования, усложняется производство буровзрывных работ. Поэтому отличительной особенностью горного производства является необходимость осущения месторождений полезных ископаемых. С этой целью с территорий намечаемых к разработке месторождений или их участков переносятся поверхностные водоемы и водотоки, и выполняются мероприятия по защите горных выработок от обводнения их подземными водами. Основным способом осущения зоны горных работ является водопонижение путем проведения различных горных выработок, откачки или отвода самотеком, а затем сброса значительных объемов подземных вод в гидрографическую сеть за пределы разрабатываемого участка.

Современный уровень развития техники и технологии водопонижения позволяет успешно решать эту проблему при освоении месторождений со сложными гидрогеологическими условиями. В практике обычно используют три способа водопонижения - с поверхности, подземный и комбинированный. Первый способ предусматривает сооружение дренажных устройств (скважин, канав, иглофильтров) непосредственно на земной поверхности. При подземном способе средства водопонижения располагают в горных выработках. В последние годы при проходке подземных выработок в обводненных и неустойчивых породах плывунного типа с низким коэффициентом фильтрации используют забойное водопонижение, заключающееся в том, что в забое в горную породу на различную

глубину погружают иглофильтры. С помощью рукавов иглофильтры подключают к водосборному коллектору, в котором поддерживают достаточно глубокий вакуум, позволяющий всасывать через иглофильтры воду из обводненного грунта. Комбинированный способ является сочетанием способа водопонижения с поверхности и подземного и реализуется, как правило, в два этапа. Вначале с поверхности производится предварительное снижение уровня грунтовых вод, а вводится эксплуатацию система подземного водопонижения. нарушается режим Естественный подземных вод c момента вскрытия дренажными выработками технологическими горными или первого поверхности водоносного горизонта и после откачки из него воды. При этом запасы подземных вод сокращаются, а состояние и качество поверхностных вод существенно ухудшаются. На значительной площади месторождения образуется депрессионная воронка, размеры которой зависят как от геологических и гидрогеологических условий района месторождения, так и от продолжительности его разработки. При водоотливе наиболее низкий уровень подземных вод в зоне горных работ приходится на забой проходимой выработки. С углублением выработки понижается и уровень подземных вод. В результате водопонижения уровень подземных вод снижается на площади, превышающей площадь разработки месторождения иногда в десятки и сотни раз (Микашевичский карьер нерудных материалов). На некоторых месторождениях в пределах воронки депрессии создается гидравлическая связь нескольких напорных водоносных горизонтов, что приводит к переливу вод из вышерасположенных горизонтов в нижние. Как правило, воронка депрессии при этом захватывает водоносные горизонты со свободной поверхностью (безнапорные горизонты) и грунтовые воды, которые имеют гидравлическую связь с поверхностными водами. Это способствует активизации инфильтрации, что приводит к подпитке подземных водоносных горизонтов поверхностными водами. Поэтому размеры депрессионной воронки зависят от наличия и расположения поверхностных водоемов и водотоков: чем ближе поверхностные воды к зоне разработки, тем меньше радиус депрессионной воронки.

Осушение месторождения приводит к резкому изменению естественного режима подземных и поверхностных вод. На поверхности земли нарушения состояния подземных и поверхностных вод проявляются в полном осушении заболоченных участков, уменьшении запасов вод в поверхностных водоемах и водотоках, осущении колодцев и неглубоких водозаборных скважин, иссякании источников, исчезновении небольших ручьев и рек. При прекращении откачек в связи с завершением горных работ со временем депрессионные воронки исчезают и режим подземных вод восстанавливается. Восстанавливается также уровень вод в колодцах и водозаборных скважинах. В большинстве случаев возрождаются поверхностные водоемы и водотоки. Однако восстановление режима и состояния подземных и поверхностных вод зависит от масштабов нарушений. Если при способе разработки восстановительные процессы подземном относительно быстро, то при открытой разработке месторождений эти процессы глубины и состояния карьеров, заполнения пространства вскрышными породами, направления рекультивации. Мероприятия по охране природных вод особенно актуальны для открытого способа разработки месторождений полезных ископаемых со сложными гидрогеологическими условиями, так как если при подземном способе разработки водопритоки с водоносных горизонтов, залегающих выше зоны добычных работ, могут быть локализованы, то при открытом способе вскрываются все водоносные горизонты, залегающие в разрабатываемой толще пород, и сами горные выработки обладают дренирующим эффектом. В связи с большими размерами интенсивностью водопонижения при открытых разработках депрессионных воронок достигают огромных значений, охватывая обширные прилегающие территории. Размер воронок депрессии или радиус влияния осушенных выработок зависит от коэффициента фильтрации, водоотдачи, площади и мощности осушаемого пласта, напоров, понижения уровня, площади питания, количества дренажных точек, их взаимного расположения, типа и расположения горных выработок, продолжительности И интенсивности водоотбора, динамического притока вод в горные выработки и некоторых прочих факторов. Наибольшие размеры воронок депрессии характерны трещиноватых и закарстованных обводненных пород. В начальный период откачки или дренажа подземных вод, когда только формируется воронка условиях неустановившегося их движения, срабатываются статические запасы подземных вод, т.е. вод, накопившихся в водоносных пластах горных пород в течение длительного периода времени. По мере понижения уровня подземных вод и срабатывания их запасов в водоносных горизонтах, из которых непосредственно производится откачка, постепенно вовлекаются в сработку и динамические ресурсы подземных вод, т.е. вод, поступающих из области питания, из боковых зон осущаемого пласта и из других водоносных горизонтов, имеющих с осущаемыми толщами гидравлическую связь. После стабилизации расхода и дина мического уровня основная масса подземных вод поступает со стороны постоянных источников питания. При этом величина водопритоков полностью природными условиями: орографическими, определяется местными геологическими, гидрогеологическими, климатическими и пр. Соотношение объемов статических и динамических запасов зависит от их ресурсов в области питания. При осушении месторождений, особенно при открытых горных работах, прежде всего истощаются запасы высококачественных пресных вод, которые должны использоваться в основном для коммунального хозяйственно-питьевого водоснабжения. Попадая в систему дренажных канав, водосборников и коллекторов, пресные воды загрязняются и приобретают свойства «рудничной воды», а затем загрязняют поверхностные воды. При срабатывании динамических ресурсов подземных вод возникает опасность загрязнения пресных минерализованными, что может привести к снижению их качества или сделать вообще непригодными для питьевого использования. Сброс сдренированных подземных вод, содержащих повышенное количество химических элементов или соединений, при недостаточной очистке приводит к загрязнению поверхностных вод в еще большей степени. Значительный ущерб народному хозяйству наносится при истощении запасов вод, обладающих бальнеологическими свойствами. Срабатывание подземных приуроченных горизонтам, запасов вод,

представленным выщелачиваемыми или растворимыми породами, привести к значительным изменениям инженерно-геологической обстановки. Процессы выщелачивания и последующего карстообразования активизируются как из-за изменения режима вод данного горизонта, так и в связи с уменьшением их минерализации за счет проникновения пресных вод из вышележащих горизонтов или области питания. Существенное влияние на режим и состояние поверхностных, грунтовых И подземных вод оказывают гидротехнические сооружения горных предприятий (гидроотвалы, хвосто- и шламохранилища, водохранилища и пр.). Крупноплощадные отвалы обладают большой площадью водосбора. Воды атмосферных осадков, стекающие с поверхности отвалов или профильтровавшиеся через толщу пород, загрязняются и засоряются и, в свою очередь, загрязняют и засоряют поверхностные водоемы и Инфильтрация вод в основании отвалов и гидротехнических водотоки. сооружений приводит, как правило, к подъему уровня грунтовых вод и заболачиванию прилегающей территории по контуру этих сооружений, а также к подпитке подземных водоносных горизонтов, особенно верхних. На горных предприятиях Курской магнитной аномалии инфильтрация из хвостохранилищ препятствует снижению уровня верхнего водоносного горизонта на 50 м. Радиусы подпора при заполнении хвостохранилищ составляют 6-8 км. Загрязнение вод. Для горнодобывающих предприятий в отличие от горноперерабатывающих характерно значительное превышение объемов сточных вод над объемами водопотребления для обеспечения технологических процессов и удовлетворения других потребностей предприятий. Дренажные воды, а также воды, стекающие с поверхности отвалов, не могут без соответствующей подготовки и очистки включаться в замкнутый цикл горного производства. Основной объем их должен отводиться. Недоброкачественные рудничные воды при отсутствии очистных сооружений, попадая в поверхностные водоемы и водотоки, загрязняют их. Это отрицательно воздействует на флору и фауну поверхностных вод, а также на флору и фауну лесных и сельскохозяйственных угодий окружающих территорий, санитарно-гигиенические условия местности. Особенно загрязняются дренажные воды угольных месторождений. Выделяются следующие основные загрязняющие вещества в водах, откачиваемых из угольных шахт: взвешенные частицы, главным образом, угольная и породная пыль, частицы глины, хлористые соединения, свободная серная кислота и сопутствующие соли сульфаты железа, растворенные И взвешенные фенольные соединения, масла. загрязняющих факторов относятся также повышенная температура шахтных вод и канализационные стоки. Из-за наличия хлористых и сернистых соединений, а также кальция, магния, натрия и калия шахтные воды без предварительной очистки и нейтрализации не могут быть использованы даже в технических целях. Рудничные воды могут содержать соли других тяжелых металлов - меди, цинка, марганца, никеля, ртути, свинца, урана и др. Попадая в поверхностные или подземные воды, загрязняющие вещества включаются в природный круговорот. При благоприятных условиях они накапливаются в почвах, донных отложениях, затем переходят в растительность, организмы животных, а через них и воду - в человека. Геохимические процессы, протекающие в водоемах и почвах в связи с

разработкой месторождений полезных ископаемых, во многом сходны с природными, обусловленными ветровой и водной эрозией, выветриванием горных пород. Однако, если природные процессы протекают медленно, существенно не нарушая равновесия между геосистемами и не ухудшая сложившиеся экологические условия, то в результате техногенной деятельности в связи с резким увеличением загрязняющих веществ это равновесие нарушается и экологическая обстановка резко ухудшается. Вследствие переноса загрязняющих веществ на значительные расстояния локальное воздействие горных предприятий на окружающую среду перерастает в региональное. Особенно велико влияние сброса дренажных вод горных предприятий на сток малых и средних рек, в результате чего он может возрасти в 1,5- -3 и более раз. При этом изменяются качество и тепловой режим вод в этих водотоках. Предприятия горной промышленности США сбрасывают в природные бассейны ежегодно около 7,6 млн м3 сточных вод. При этом необходимо иметь в виду, что рудничные воды загрязнены, как правило, хлористыми соединениями, сульфатными соединениями железа, меди, марганца и перед сбросом должны быть очищены. В США почти 10 тыс. км ручьев и рек и около 12 тыс. га водной поверхности загрязнены водами кислого и щелочного состава, поступающими из угольных разрезов, в районе Аппалачей кислотность вод в водотоках на значительном протяжении от мест сброса шахтных вод характеризуется показателем рН = 2, что приводит эти воды в состояние, не пригодное не только для жизнедеятельности водной фауны, но и для технического использования. Засорение иловыми осадками. При открытой разработке месторождений полезных расположенных ископаемых, непосредственной близости от берегов озер, морей и океанов, может возникнуть заиливание водного бассейна. Например, значительное ускорение накопления осадков в заливе Сан-Франциско (США) наступило после того как на берегах залива и впадающих в него рек приступили к разработке месторождения золота. За 60 лет было размыто около 2 млрд м3 породы. Более половины ее осело в заливе и прилегающих к нему водных артериях. Это привело к значительному изменению конфигурации береговой линии и уменьшению площади залива на 11 %. Таким образом, горное производство оказывает на природные воды прямое и косвенное воздействие. К первой группе относятся виды воздействия непосредственно на водные объекты, приводящие к истощению запасов вод, изменению их режимов, состояния и качества: осущение месторождений, отбор вод для технологических процессов обогащения, гидровскрыши, гидродобычи, сброс дренажных и сточных вод в поверхностные водоемы и водотоки, подземные горизонты и пр. Ко второй группе относятся виды воздействия на другие элементы окружающей среды (землю, воздух, растительность), в результате которых ухудшаются состояние и качество природных вод.

6. Нарушение земной поверхности при разработке месторождений горнодобывающей промышленности

Специфическая особенность размещения предприятий горной

промышленности заключается в том, что они могут создаваться только там, где имеются залежи полезных ископаемых. При этом горные предприятия обычно являются основой для образования крупного производственного комплекса из предприятий различных отраслей промышленности со сложной инфраструктурой. В связи с этим нагрузки на окружающую среду увеличиваются. Общая площадь земельных участков, используемых предприятием за весь срок его существования, составляет общий земельный отвод. В ходе строительства, эксплуатации и реконструкции предприятия величина земельного отвалов может изменяться как в сторону увеличения при полу чении в пользование новых земель, так и в сторону при возвращении землепользователем неиспользованных рекультивированных площадей и земельных участков, надобность в которых миновала. В земельном отводе выделяются следующие группы участков, предназначенных: - производства собственно горных работ; такие участки предоставляются во временное пользование, кроме площадей под внешние отвалы и хвостохранилища, которые в основном передаются в долгосрочное пользование, - размещения основных технологических и вспомогательных промсооружений, в том числе очистных и водозаборных сооружений водохранилищ, базисных и расходных складов взрывчатых материалов, внутриплощадных коммуникаций и других объектов инфраструктуры; такие земельные участки, как правило, предприятиям предоставляются горным В постоянное или временное долгосрочное пользование; - размещения гражданских и жилых зданий, строительства поселков горных предприятий или зданий и сооружений для нужд горных предприятий на существующих территориях; такие земельные участки предоставляются в постоянное пользование; - для размещения различного рода коммуникаций (линейных сооружений): железных и шоссейных дорог, линий электропередачи, связи, газо-, нефте- и водопроводов, канализации и пр.; такие земельные участки в зависимости от назначения коммуникаций и сроков их эксплуатации передаются в постоянное или временное пользование. Ареал отрицательного воздействия горного предприятия на окружающий ландшафт значительно превышает площадь земельного отвода, что ухудшает экологическую обстановку в районе горного предприятия. Воздействие горного производства на ландшафт можно разделить на прямое и косвенное. К прямому относят воздействия, приводящие к нарушению почвенного покрова, изменению облика территорий, сокращению площадей сельскохозяйственных и лесных угодий, уничтожению растительного покрова пли миграции животных: строительство карьеров и разрезов, возведение отвалов, сооружение хвосто- и водохранилищ, строительство промышленных и гражданских зданий, прокладка дорог и других видов коммуникаций, деформации земной поверхности в зоне горных выработок, особенно при подземном способе разработки. Прямое воздействие приводит к образованию нового техногенного ландшафта в зоне влияния горного производства. К косвенному относят воздействия, приводящие к ухудшению состояния и плодородия земель, условий произрастания растений и обитания животных: изменение состояния и режима грунтовых вод в связи с осушением месторождений, осаждение пыли и химических соединений из выбросов в атмосферу, инфильтрация загрязненных или минеральных вод через дамбы и

основания хвосто- и водохранилищ, вынос и осаждение продуктов эрозии нарушенных земель, подтопление и заболачивание участков земель с близко расположенным уровнем грунтовых вол, при деформациях земной поверхности в зоне подземных торных работ, ухудшение качества вод и режима поверхностных водоемов и водотоков. Косвенное воздействие может привести к деградации природного ландшафта. Характеристика прямого воздействия горного предприятия на земли составляется на основе материалов текущего учета земель и их периодической инвентаризации. Характеристика косвенного воздействия основывается на определении размеров территории, подверженной этому воздействию, степени изменения состояния и качества почв, снижения продуктивности сельскохозяйственных и лесных угодий, изменения качества их продукции. Вследствие прямого и косвенного воздействия горных работ на ландшафты возникают следующие неблагоприятные экологические факторы: сокращение площадей природных и культурных (прямых) техногенных ландшафтов, водная и ветровая эрозии, разрушение почвенной структуры, переувлажнение (заболачивание, минерализация, засоление, интоксикация, подтопление), иссушение, уплотнение, карстообразование, увеличение электромагнитного поля и радиоактивного фона, изменение микроклимат и т.д.

Существует различные методы защиты ландшафтов. Механический метод защиты поверхности от эрозии основан на возведении механической преграды на пути разрушающего агента (воздушного или водного потока). В отличие от биологического и химического методов противоэрозионной защиты породы, слагающие защищаемую поверхность, непосредственно не участвуют в процессе повышения устойчивости поверхности к эрозии. Для преграждения пути водным потокам применяют специальные способы вспашки склонов с образованием продольных борозд па поверхности откоса, возводят земляные валы или водоотводные нагорные траншеи и т.п. Однако такие способы не защищают поверхность склонов от прямого воздействия дождя и ветра. Большей надежностью характеризуются способы непосредственного покрытия хвостохранилищ эродируемой поверхности твердыми конструктивными элементами типа сплошных или решетчатых щитов (с последующей посадкой растений в ячейках решеток), сборных железобетонных элементов, соломенных, тростниковых или камышовых матов и плит (последние предварительно обрабатываются вяжущими составами), насыпных слоев щебня, шлака, древесной коры и т.п. В последнее время для укрепления поверхности откосов высоких земляных сооружений типа насыпных плотин, отвалов песчано-глинистых пород применяют покрытия из синтетических полотен. Однако в этом случае затруднена последующая биологическая рекультивация.

Способы механической защиты поверхности от эрозии отличаются значительной трудоемкостью, низкой производительностью и для решения рассмотренных выше задач используются лишь в отдельных случаях, главным образом, как вспомогательные в сочетании с биологическим закреплением поверхности. Биологический метод защиты поверхности от эрозии предусматривает посадку (посев) культурных или дикорастущих растений на поверхностном слое укрепляемых пород или внесение в этот слой культур

микроорганизмов. Защита пород от разрушения достигается благодаря двум эффектам: глубинному (объемному) связыванию минеральных частиц в пределах укрепляемого слоя и экранированию поверхности от внешних воздействий. В первом случае эффект укрепления создается в результате склеивающего действия продуктов жизнедеятельности микроорганизмов (бактерий, низших растений) или вследствие армирующего действия корневой системы растений. Во втором случае часть биомассы, покрывающая защищаемую предотвращает непосредственное воздействие на эту поверхность воздушных и водных потоков или предельно снижает их скорость вблизи поверхности. Кроме того, ослабляется проявление температурного контраста, связанное с суточными колебаниями окружающей среды. И. наконец. температуры зарастании неравномерном поверхности просто такие участки механическим препятствием для частиц грунта, перемещаемых с незаросших участков, и тем самым предотвращают вынос продуктов эрозии в окружающую среду. В практике противоэрозионной защиты нарушенных горными работами земель наибольшее распространение получил способ залужения поверхности, в особенности поверхности откосов, которые не предназначены для лесо- или сельскохозяйственного использования. Здесь эффективно использованы торфодерновые ковры. Выращенные вне отвалов (на верховых торфяниках) ковры транспортируют с помощью простейших средств (волоком на металлических листах) к отвалу и вручную укладывают на откосе. Физикохимический метод противоэрозионного укрепления поверхности основан на управлении свойствами и структурой грунта в укрепляемом слое путем введения в него различных вяжущих веществ. По типу применяемых вяжущих (структурообразователей) различают способы: цементации, битумизации, силикатизации, укрепления грунтов синтетическими смолами, высокополимерными композициями и др. В процессе укрепления грунтов участвуют две физико-химические системы: грунт и структурообразователь (вяжущее). Процесс протекает на границе контакта этих двух систем. Для предотвращения эрозии на горных предприятиях могут использоваться различные типы структурообразователей: неорганические вяжущие, битумы, синтетические смолы, лигнины, латексы, полиэлектролитные композиции (поликомплексы), реже цементы. К способам закрепления грунтов неорганическими растворами можно отнести силикатизацию, укрепление грунтов фосфатными вяжущими, кремнефторводородной кислотой и ее солями, растворами солей железа и алюминия и др. Среди этих способов наибольшее распространение получили процессы силикатизации (одно- и двухрастворной), основанные на совместном применении растворов жидкого стекла силикатов щелочных металлов (натрия, калия) и различных гслеобразующих добавок, а также на применении суспензий портландцемента в растворах силиката натрия. Во всех этих случаях закрепление и снижение проницаемости дисперсных грунтов достигается в результате образования твердеющих гелей, в которых твердая фаза преимущественно представлена кремнекислотой, гидросиликатами, гидроалюмосиликатами или полимерсиликатами - в зависимости от состава используемых растворов или суспензий.

7. Выбросы основных технологических процессов от нефтедобывающой промышленности

Предприятия химического производства являются источником эмиссии значительных объемов высоко токсичных загрязнителей в различные компоненты окружающей среды. Особую опасность представляет загрязнение химическими предприятиями атмосферного воздуха, поверхностных вод и почв диоксинами и диоксиноподобными токсикантами производстве хлорфенолов, (при хлорбензолов, других хлорсодержащих веществ, а также при использовании хлорированных катализаторов и растворителей). Содержание вредных веществ в атмосфере связано с размещением оборудования на открытых площадках, нарушения его герметичности, большого количества наружных технологических коммуникаций. При производстве серной кислоты в атмосферу в большом объеме поступают сернистый газ и сероуглерод. Предприятия по производству азотных удобрений загрязняют атмосферу оксидом азота, азотной и азотистой кислот, плотность содержания которых в воздухе составляет 1,3 мг/м3 на расстоянии 0,5 км от предприятия. Производства красителей, вискозы, фотопленки, целлулоида обеспечивают загрязнение воздуха оксидом азота; заводы по производству пестицидов, органических красителей, соды, соляной кислоты, уксусной кислоты являются поставщиком хлора; предприятия по производству эмали выбрасывают соединения фтора в атмосферу. Заводы, производящие синтетический каучук выбрасывают в воздух изопрен, толуол, ацетон; предприятия по производству соды - аммиак, оксиды фосфора, диоксид серы. Производство цемента вызывает эмиссию в атмосферу оксида углерода и пыли. Нефтеперабатывающие предприятия являются источниками загрязнения воздуха углеводородами, сероводородами, оксидом углерода. При этом термический режим отходящих промышленности газов заводов химической соответствует температуре окружающей среды. Поэтому в радиусе их эмиссии происходит скопление токсичных веществ. Этот процесс при наличии безветренной погоды и в условиях термической инверсии часто приводит к возникновению смога. Негативное воздействие предприятий химического комплекса на окружающую среду проявляется и на гидросферу. На многих предприятиях функционирует оборотная система водоснабжения, в результате чего объем водопотребления чистых вод снижается. Однако повторное использование технически загрязненной воды не всегда возможно по условиям технологии производства. Для приведения ее в соответствие с нормативной для технических целей, часть использованных загрязненных вод разбавляется чистой водой, вторая часть трансформируется в сточные воды. Со сточными водами предприятий химической промышленности в гидросферу поступают: нефтепродукты, взвешенные вещества, азот общий и аммонийный, нитраты, нитриты, хлориды, сульфаты, фосфор общий, цианиды, роданиды, кадмий, кобальт, марганец, медь, никель, ртуть, свинец, хром, цинк, сероводород, сероуглерод, формальдегид, фенолы, поверхностно-активные вещества, пестициды и др. Химические предприятия характеризуются огромным ассортиментом выпускаемой продукции, среди которой есть крупнотоннажная, исчисляемая десятками млн. т (серная, азотная, фосфорная и соляная кислоты, минеральные удобрения и др.), но имеется и малотоннажная, исчисляемая тоннами и даже килограммами (например, реактивы). Во всех случаях в атмосферу поступают токсичные вещества (табл. 7.7.). При реализации технологий неорганических веществ можно выделить три основных загрязнителя — оксиды серы, азота и взвешенные частицы. В то же время фиксируется около 400 ненормируемых загрязняющих веществ, имеющих широкий диапазон опасных свойств. К ним можно отнести аммиак, хлороводород, фтороводород.

Ненормируемые загрязняющие вещества незначительны по объему, но их многообразие представляет проблему для работы очистных сооружений. Предприятия неорганической химии создают высокие уровни загрязнения атмосферного воздуха, поверхностных вод почв диоксинами диоксиноподобными веществами. В производстве органических основными загрязнителями являются углеводороды и оксиды углерода, выбросы которых исчисляются многими тысячами тонн. Но имеются и токсичные вещества, выбросы которых хотя и небольшие, но крайне опасные. Среди них полициклические ароматические соединения: бенз(а)пирен, перилен, бенз(е)пирен, бенз(жи)перилен и др.

Нефтеперерабатывающая промышленность. Нефтеперерабатывающие заводы (НПЗ), относящиеся к крупнотоннажным производствам, выпускают горючие и смазочные материалы, битумы, электродный кокс, ароматические углеводороды.

Со сточными водами НПЗ в поверхностные воды поступает значительное количество нефтепродуктов, сульфатов, хлоридов, соединений азота, фенолов, солей тяжелых металлов. Большой проблемой НПЗ являются токсичные отходы, состоящие из химически активных газов, образующихся при эксплуатации очистных сооружений. Подобно металлургическим, предприятия нефтепереработки являются наиболее мощными загрязнителями в пределах городов, где они размещены.

Характеристика технологического процесса добычи нефти

Бурение- это процесс сооружения скважины путем разрушения горной породы.

Скважиной называется цилиндрическая горная выработка, сооружаемая без доступа в нее человека и имеющая диаметр во много раз меньше длины.

Они подразделяются:

- опорные,
- параметрические,
- структурные,
- поисковые,
- разведочные,
- эксплуатационные
- специальные.

Способы бурения: механическим, термическим, физико-химическим электроискровым и другими способами разрушения породы. Промышленное применение только механическим.

Механическое разрушение породы осуществляется с использованием

мускульной силы человека (ручное бурение) или двигателя (механическое бурение).

Механическое бурение осуществляется ударным, вращательным и ударновращательным способами.

Добыча нефти заключается в нахождении мест ее накопления, проникании (иногда на очень большую глубину) через толщу горных пород, образующих и покрывающих купол, к нефтяному пласту и извлечении топлива из паста. Поэтому работа на нефтепромысле, который заранее найден и изучен геологами, подразделяется на два этапа: бурение скважин и эксплуатация скважин.

Бурение скважин

Скважиной называют колодец круглого сечения, пробуриваемый в земле. Верх скважины называется устьем, а дно, в котором буровой инструмент разрушает породу, - забоем. Глубина скважин иногда достигает 4000-6000 м и более.

Раньше при прохождении скважины породу долбили специальным долотом, закрепленным на длинной штанге. Такой метод назывался ударным бурением. Затем перешли к методу вращательного бурения, по которому разрушение породы производится бурильным инструментов, прикрепленным к вращающейся, периодически наращиваемой бурильной тубе. Непрерывный поток воды со взмученной в ней глиной (глинистый раствор) промывает скважину, вынося из нее раздробленную породу, охлаждая инструмент, закрепляя стенки скважины и создавая в скважине гидравлический затвор, препятствующий выбросам нефти.

В 1924 г. М.А Капелюшников (СССР) предложил метод турбинного бурения, по которому механизм, вращающий буровой инструмент, переносится в забой. Таким механизмом явилась специальная турбина, вращаемая подаваемым в нее глинистым раствором. Применение турбобура исключило необходимость вращать всю тяжелую колонну бурильных труб, что упростило технику бурения сделало ее более экономичной. Позже, также в СССР, был сконструирован электробур — буровой инструмент, вращаемый специальным электродвигателем, также опускаемым в забой. При помощи тубо- и электробуров можно бурить не только вертикальные, но и наклонные скважины. Это позволяет пробуривать скважины под морское дно, под здания и сооружения бурить с одной площадки 8-12 расходящихся скважин (кустовое бурение).

Эксплуатация скважин

Способ добычи нефти зависит от того, находятся ли они в пласте под давлением или нет. В первом случае, как только скважина пройдет через непроницаемый, сдерживавший слой, нефть вырывается по ней на поверхность такой метод ее добычи называется фонтанным. Над устьем скважины ставят специальную запорную арматуру, через которую нефть отводят по трубам в специальные приемные устройства. Под пластовым давлением нефть можно перемещать на значительные расстояния, что повышает экономичность данного метода добычи. По мере эксплуатации скважины давление в пласте падает, его удается искусственно поддерживать, например, закачивая в пласт (по его контуру) вод через исчерпанные скважины.

Во втором случае, когда давление в пласте отсутствует, осуществляют

подъем нефти при помощи газа (или воздуха) или откачиванием ее глубинными насосами. По первому способу сжатый газ, подаваемый в пласт, соприкасается с нефтью) и вспенивает ее. Легкая газо-нефтяная пена по подъемной трубе поступает в газоотделитель, а из него нефть поступает в хранилище, откуда расходуются по назначению.

Описанными способами удается извлечь из пласта далеко не всю находящуюся в нем нефть. В зависимости от способа добычи отдача нефти составляет 40 %, редко - до 60 % ее запасов в пласте. Увеличить отдачу нефти удается только специальными приемами .

Поступающая из нефтяных и газовых скважин продукция не представляет собой соответственно чистые нефть и газ. Из скважин вместе с нефтью поступают пластовая вода, попутный (нефтяной) газ, твердые частицы механических примесей (горных пород, затвердевшего цемента).

Пластовая вода — это сильно минерализованная среда с содержанием солей до 300 г/л. Содержание пластовой воды в нефти может достигать 80%. Минеральная вода вызывает повышенное коррозионное разрушение труб, резервуаров; твердые частицы, поступающие с потоком нефти из скважины, вызывают износ трубопроводов и оборудования. Попутный (нефтяной) газ используется как сырье и топливо.

Технически и экономически целесообразно нефть перед подачей в магистральный нефтепровод подвергать специальной подготовке с целью ее обессоливания, обезвоживания, дегазации, удаления твердых частиц.

На нефтяных промыслах чаще всего используют централизованную схему сбора и подготовки нефти. Сбор продукции производят от группы скважин на автоматизированные групповые замерные установки (АГЗУ). От каждой скважины по индивидуальному трубопроводу на АГЗУ поступает нефть вместе с газом и пластовой водой. На АГЗУ производят учет точного количества поступающей от каждой скважины нефти, а также первичную сепарацию для частичного отделения пластовой воды, нефтяного газа и механических примесей с направлением отделенного газа по газопроводу на ГПЗ (газоперерабатывающий завод). Частично обезвоженная и частично дегазированная нефть поступает по сборному коллектору на центральный пункт сбора (ЦПС). Обычно на одном нефтяном месторождении устраивают один ЦПС. Но в ряде случаев один ЦПС устраивают на несколько месторождений с размещением его на более крупном месторождении. В этом случае на отдельных месторождениях могут сооружаться комплексные сборные пункты (КСП), где частично производится обработка нефти. На ЦПС сосредоточены установки по подготовке нефти и воды. На установке по подготовке нефти осуществляют в комплексе все технологические операции по ее подготовке. Комплект этого оборудования называется УКПН установка по комплексной подготовке нефти.

8. Выбросы основных технологических процессов от черной металлургии

По объему загрязнений одно из первых мест в народном хозяйстве занимает черная и цветная металлургия, металлообрабатывающая промышленность. Производство чугуна и стали сопровождается образованием более десятков млн. т металлургических шлаков, из которых используются технологиями только 50%. Металлургические шлаки содержат железо, тяжелые металлы, мышьяк, сурьму и т.д. Различные виды металлургического производства и металлообработки формируют значительное количество разнообразных по составу шламов и пыли, которые затем практически не используются и превращаются в отходы производства или загрязнители окружающей среды (накопление шламов с содежанием железа около 50% на заводах черной металлургии только в России достигает 20 млн. т в год. Черная металлургия. В рамках металлургических комбинатов полного цикла размещаются основные производства (подготовка руды, производство кокса, выплавка чугуна, стали, прокат металла) и обслуживающие (энергетические, транспортные, ремонтно-механические) службы. В настоящее время объем производимого металла на таких крупных предприятиях России, Индии, Китая, США достигает сотен миллионов тонн. Процессы выплавки чугуна и переработки его в сталь сопровождаются выбросом в атмосферу различных вредных веществ. Подсчитано, что выброс пыли в расчете на 1 т передельного чугуна составляет 4,5 кг, диоксида серы — 2,7 кг, марганца — 0,1-0,6 кг. Наряду с указанными, в атмосферу поступают такие вредные вещества, как соединения мышьяка, фосфора, сурьмы, свинца, пары ртути, цианистый водород и смолистые вещества. Основным источником загрязнения воздуха диоксидом серы являются агломерационные фабрики.

Во время агломерации (окусковывания) измельченной руды происходит выгорание серы из сульфосодержащих руд (пиритов). Последние содержат до 10% серы, а после агломерации ее остается всего лишь 0,2-0,8%. Поэтому выброс SO2 может составить до 190 кг на 1 т руды.

При агломерации концентрация пыли в отходящих газах составляет от 2-7 до 15-20 г/м3. При этом средний состав пыли (%): железа - 50, оксидов кремния, кальция н алюминия — около 10, оксидов углерода, серы и магния примерно по 2. Значительное количество пыли образуется И при транспортировке агломерата, дроблении и грохочении исходных компонентов. Большинство современных заводов черной металлургии имеют цехи коксования углей и отделения по переработке коксового газа. При размоле угля, загрузке шихты в батареи и выгрузке кокса на коксохимических производствах образуются угольная пыль и сажа. В процессе коксования выделяется газ, содержащий пары углеводородов (смолистых веществ). Количество газообразных выбросов составляет 3-5 м3, смолистых веществ 0,2-0,5 кг на 1 т используемого угля. Считается, что наиболее серьезное загрязнение воздуха происходит при мокром тушении кокса, в процессе которого выделяется в среднем (кг/т): 0,01-0,04 гидросульфида; 0,05 аммиака; 0,006 цианида; 0,08-0,1 фенола. При нагревании коксовых батарей коксовым и колошниковым газом в отходящих газах может содержаться до 2 г/м3 диоксида

серы и 0,2-1,0 г/м3 диоксида азота. Могут быть обнаружены компоненты смолы, бенз(а)пирен, сероводород и др. В сточных водах коксового производства в качестве основного вещества-загрязнителя выступает фенол (до 2 г/дм3), кроме него часто присутствуют цианиды, роданиды, смолы, масла. Доменное производство является крупным загрязнителем атмосферы, выбрасывая пыль, диоксид серы, оксид углерода, оксиды азота, сероводород. Особенно значительны выбросы сточных вод, образующихся в процессе производства чугуна. Они содержат частички руды, кокса, известняка, а также химические соединения – сульфаты, хлориды и др. Доменный процесс сопроваждается выходом доменных шлаков и шламов. На 1 т чугуна приходится от 0,4 до 0,65 т доменных шлаков. Состав их сложен, в них встречаются до 30 химических элементов. Основные из них - SiO2, Al2O3, CaO и MgO. Для городов с металлургическими заводами проблема хранения доменных шлаков особенно актуальна, так как они хранятся в пределах заводской площадки, занимая территории и загрязняя окружающую среду. Доменный (колошниковый газ), образующийся при горении кокса, состоит из диоксида углерода и азота, оксида углерода, водорода и метана. Имея значительную удельную теплоту сгорания (до 4 мДж/м3), он используется как топливо. При этом газ, направляемый потребителю, должен быть полностью очищен от твердых частиц. Количество и состав пыли зависит от вида сырья, содержание ее в колошниковом газе составляет 20-300 кг/т сырого чугуна, концентрация 10-200 г/м3. Пыль состоит из частиц железа, топлива, флюсов, присадок. В кислородных конверторах пыль на 80-85% состоит из оксидов железа. Значительно тонневизы атмосферу выбросы мартеновских конвертерных сталеплавильных цехов. При выплавке стали в мартеновских печах пыль образуется при окислении металлической шихты из шлака, руды, известняка и окалины, идущих на окисление примесей шихты, и доломита, применяющегося для заправки пода печи. В период кипения стали выделяются также пары металла, окислов шлака и металла, газы. Преобладающая часть пыли мартеновских печей состоит из триоксида железа (67%) и оксида алюминия (6,7%). бескислородном процессе на 1 т мартеновской стали выделяется 3000-4000 м3 газов с концентрацией пыли в среднем 0,5 г/м3. При подаче кислорода в зону расплавленного металла пылеобразование многократно увеличивается, достигая 15-52 Производство цветных металлов отличается материалоемкостью, энерго-, топливо-И производства, водоемкостью многокомпонентностью сырья, наличием значительного числа экологически вредных производств. Специфика руд цветных металлов обусловлена небольшим содержанием в них основного металла. Поэтому для получения 1 т металла необходимо переработать 100-200 т руды, а в ряде случаев и более. Балластная (неиспользуемая) часть сырья переходит в твердые, жидкие и газообразные отходы. Тенденция вовлечения в переработку все более бедного сырья вызывает увеличение этих отходов. На единицу выплавляемого металла в цветной металлургии образуется шлаков во много раз больше, чем в черной металлургии. Например, при выплавке 1 тонны никеля образуется до 15 т шлаков, меди соответственно 10-30 т. В состав шлаков входят: оксиды кремния, алюминия, кальция, железа, магния, медь, никель, свинец, кадмий, редкие металлы и др. При производстве цветных металлов в биосферу поступают: мышьяк, медь, свинец, кадмий, стронций, цинк, алюминий, молибден, вольфрам, никель. В отвалах шлаков на медеплавильных заводах содержатся миллионы т железа, меди, цинка. В шлаковых отвалах свинцовых заводов содержатся миллионы тонн железа, цинка, свинца, меди. Отрасли цветной металлургии отличаются значительным уровнем водопотребления и высоким уровнем загрязнения вод. Если в черной металлургии для выплавки 1 тонны чугуна расходуется от 25 до 800 м3 воды, то на 1 т алюминия - 1500 м3 воды. Сточные воды этой отрасли содержат грубодисперсные примеси, ионы и соли тяжелых металлов, нефтепродукты, сульфаты, хлориды, фториды, цианиды, мышьяк, сурьму и др. В результате вода становится непригодной не только для хозяйственно-питьевых целей, но и для орошения, а часто и для технического использования.

9. Загрязнения атмосферы и производственные сточные воды машиностроительных предприятий

Практически в любом городе, а тем более промышленном центре имеются предприятия машиностроения. В одном случае это единичные предприятия, в различных по специализации группа машиностроительных производств. Как и на предприятиях любой отрасли промышленности, в машиностроительной имеют место выбросы вредных веществ в атмосферу, сбросы в водную среду, а также образуются твердые отходы и физические излучения. Уровень негативного воздействия машиностроения определяется видом производства и его спецификацией. Каждый вид производства, а их более 100, имеет свою технологию, определяющую характер воздействия окружающую среду. Особую проблему для отрасли представляет образование токсичных отходов. В их числе: осадки очистных сооружений, в том числе шламы гальванических производств, горелая земля, отработанные масла и смазочноохлаждающие жидкости, стружка, окалина, промасленная ветошь, отходы электронной промышленности и производства печатных плат. Предприятиями машиностроения в атмосферу поставляются: пыль различного химического и гранулометрического состава, сернистый ангидрид, оксид углерода, оксиды азота, сероводород, масляный и сварочный аэрозоли, растворители ароматического ряда (бензол, толуол, ксилол, ацетон), углеводороды эфирного ряда (бензин, уайтспирит и др.), испарения гальванических ванн (хром, никель, свинец, цинк и др.). Наиболее экологически вредными являются литейные, механической обработки, сварочные и окрасочные производства. В результате процессов сварки и пайки в атмосферу выделяются очень опасные пары оксидов железа и цинка, аэрозоли марганца, кремния и меди, а также фториды, озон, оксиды азота и др. Из наиболее токсичных тяжелых металлов значительна эмиссия в атмосферу шестивалентного хрома (около 50%). Машиностроение загрязняет гидросферу сточными водами травильных и гальванических производств. Со сточными водами в поверхностные водотоки поступает значительное количество загрязнителей И органического и неорганического синтеза. В их числе: нефтепродукты, взвешенные вещества, сульфаты, хлориды, цианиды, соединения азота, соли железа, меди, цинка, никеля, хрома, молибдена, фосфора, кадмия и др. В выбросах в атмосферу можно выделить пыль различного гранулометрического состава, диоксид серы, оксид углерода, оксиды азота, сероводород. Кроме того, выбрасываются масляный и сварочный аэрозоли, растворители ароматического ряда (бензол, толуол, ксилол, ацетон), углеводороды эфирного ряда (бензин, уайтспирит). В процессах сварки и пайки выделяются пары оксидов железа и цинка, аэрозоли марганца, кремния, меди, а также фторидов и озона. Опасную для асбестовую здоровья ПЫЛЬ выделяют применяемые производстве звукопоглощающие При теплоизоляционные И материалы. проведении окрасочных работ в атмосферный воздух поступают пары органических растворителей лакокрасочных материалов и аэрозоли пигментов. При работе металлорежущих станков применяют, как известно, смазочно-охлаждающие жидкости (масла, эмульсии). Естественно, указанные вещества попадают в воздух. При сухой обработке металлов абразивными инструментами (например, при шлифовке) выделяется абразивная пыль, представляющая большую опасность для здоровья человека. Машиностроительные предприятия являются источником существенного загрязнения сточными водами. Особой токсичностью выделяются сточные воды травильных отделений и гальванических цехов, где они по своему действию напоминают яды. Травильный раствор обычно состоит из серной или соляной кислоты. Концентрация их в свежем растворе составляет от 15 до 20%, а в отработанном – 4,5%. В водах, образующихся при травлении цветных металлов и их сплавов, содержатся кроме остатков кислот также катионы металлов из протравленных заготовок. Около 40% стоков составляют хромсодержащие сточные воды. Твердые отходы машиностроительных предприятий различной специализации отличаются относительно однородным составом - черные и цветные металлы, окалина, горелая формовочная смесь, древесина, пластмассы, бумага, картон. Развитие средств связи, телевидения, компьютерной техники, для чего требуется привлечение высококвалифицированных специалистов, осуществляется по понятным причинам в основном в городах, прежде всего крупных. Масштабы воздействия соответствующих производств на природную среду, несомненно, меньше, чем у традиционных отраслей машиностроения, необходимость выпуска особо чистых материалов поскольку уважительного отношения и к чистоте окружающей, особенно производственной, среды. Однако отходы производства элементной базы ЭВМ, полупроводников, магнитных материалов и др. содержат тяжелые металлы, соединения кремния, а в выбросах в атмосферу присутствуют хотя и мышьяка, незначительные по количеству, но разнообразные по составу высокотоксичные вещества. Среди них есть и такие, характер влияния которых на организм человека изучен недостаточно. Шумы и вибрация относятся к числу специфических видов загрязнения среды обитания и являются непременным спутником многих процессов: работы технологических вентиляционных систем, насосов, компрессорных установок и др.

10. Хранение и захоронение отходов АЭС

Потенциальными источниками формирования аномальных промышленных радиоактивных загрязнений среды являются атомные электростанции мира. Первый на Евразийском континенте реактор (запущенный 25 декабря 1946 г. на окраине Москвы) и первая в мире атомная электростанция (1954 г., г.Обнинск) строились и эксплуатировались с чрезвычайной предосторожностью. По теоретическим прогнозам тех лет - расчетам американских физиков, проделанным в 1958 г., авария на обычной АЭС могла бы привести к гибели 3400 чел. и переоблучению 43 тыс. чел. на территории около 385 тыс. км2. В последующем, на основании анализа эксплуатации АЭС, меры предосторожности резко снизились, что привело к сокращению зон отчуждения вокруг АЭС (территорий запрета на строительство жилья). За 1956-1990 гг. в СССР было построено 12 АЭС с 37 реакторами и 20 исследовательских реакторов. Советские реакторы по системам защиты были признаны (Лондон, 1960) наиболее безопасными, и до аварии на Чернобыльской АЭС крупных инцидентов на них не происходило. Тем не менее типовые загрязнения среды даже при нормальном режиме работ неизбежны. Поэтому территории, непосредственно прилегающие к АЭС, реакторам, пунктам захоронений радиоактивных отходов, следует отнести к разряду с повышенной радиоактивностью среды. В последующем подтвердилось рядом аварий на АЭС в США и Англии (20 аварий за 20 лет), а затем в СССР и в Японии. Состав радиоактивного загрязнения среды на прилегающих к АЭС и исследовательским реакторам территориях тот же, что и при ядерных взрывах, авариях, но при значениях, в сотни раз меньших по сравнению с загрязнениями от испытаний ядерного оружия. радиоактивность среды связана с халатностью работников исследовательских радиационных лабораторий разного профиля. Ярким примером этому может служить радиоактивная загрязненность Москвы. На территории города в ходе скрупулезных обследований, выполненных после чернобыльских событий, обнаружено до 80 мест нерегистрированных «захоронений» использованных радионуклидов. В целом за 10 лет ликвидировано до 600 «могильников» такого рода. Радиоактивное загрязнение среды в крупных масштабах произошло в результате аварии на военном ядерном центре «Челябинск-40» (или «Маяк»). в 1957 вследствие теплового взрыва одного ИЗ ядерных Радиоактивный выброс (облако) охватил значительную часть Челябинской области (с населением 3548 тыс. чел) и прилегающие районы Тюменской, Курганской, Свердловской областей. Максимальная длина образовавшегося Восточно-Уральского радиационного следа составила 300 км. Загрязнение среды активностью свыше 0,1 Ки/км2 (по стронцию-90, основному радионуклиду взрыва) охватило 23 тыс. км2, 217 населенных пунктов с общей численность населения 270 тыс. чел. Помимо аварийной загрязненности, на территории района площадью 30-40 км2 было сосредоточено более 200 могильников: с радиоактивность 4 млн. Ки – вплавлены в стекло; с 150 млн. Ки – в спецхранилищах и ёмкостях; около 200 млн. Ки – сброшены в озеро Карачай, Старое Болото, пойму реки Течи. Чернобыльская катастрофа. Территориальное

распределение радиоактивного загрязнения шло неравномерно. Радиоактивным выпадениям, повысившим радиационный фон более чем в 5 – 10 раз за счет короткоживущих изотопов, подверглись территории Польши, Германии (ГДР), Италии, Швейцарии, Франции, Бельгии, Нидерландов. К началу мая аналогичные выпадения регистрировались в Великобритании, Греции, Израиле, Кувейте, Турции. Но наиболее массивным загрязнениям подверглись 13 областей России, Беларуси, Украины: Минская, Брестская, Ровненская, Могилевская, Гомельская, Житомирская, Киевская, Черкасская, Черниговская, Брянская, Калужская, Орловская, Тульская. Суммарная площадь районов с загрязнением > 40 Ки/км2, потребовавших срочной эвакуации свыше 130 тыс. чел., составила 7000 км2 (2000 км2 в России). Для дезактивации территорий было снято около 200 тыс. м3 грунта. заасфальтировано 2500 км дорог, снесены и захоронены деревни и поселки. Меры, тем не менее оказались крайне неэффективными, и обратное заселение (особенно в Беларуси) было разрешено в немногие населенные пункты. Распределение радиоактивной загрязненности чернобыльского происхождения чрезвычайно мозаично. Общая площадь цезий-стронцийплутониевой и короткоживущей иодной радиоактивной загрязненности в России составила 147 тыс. км2 с 4270 населенными пунктами и общей численностью населения - 3 млн. чел., треть населения территорий с резко изменившимся составом среды (783 тыс.) - дети. Наиболее сильно в России пострадали Брянская, Калужская, Тульская области, а ряд районов Воронежской и Липецкой областей. Критическими загрязнений являются % радионуклидами цезий (79.3)радиоактивности среды); стронций (19,8 %) и микровкрапления плутония (0,9 %). В Беларуси доля территорий, радиоактивность которых превышала (по данным Международной программы ликвидации последствий Чернобыльской аварии) 1 Ки/км2, составила 22% (20 % населения). Из зон отселения и отчуждения было срочно эвакуировано 24,7 тыс. чел., 33 лечебно-профилактических учреждения осуществляли экстренное медицинское обслуживание эвакуированных. загрязнению подверглось около 30 % территорий. пострадавшим, потребовавшим экстренной медицинской помощи, оказалось Полесье. Радиоактивность Овручского, Ивановского, Полесского районов достигала 40 Ки/км2, накапливаемые эквивалентные дозы - 4,86 бэр/год. Общая численность населения Украины, получившего повышенные лучевые нагрузки (по данным 1991 г.), составила 1,53 млн. чел. Справедливости ради необходимо что на территориях естественных аномальных радиационных воздействий, превышающих внешние лучевые нагрузки фона в пять-десять раз, проживают на протяжении тысячелетий несколько десятков миллионов человек (Индия, Непал); на территориях резко повышенных внутренних и смешанных лучевых воздействий излучений естественных OT почв, радионуклидов, проникающих в организм, - примерно столько же (Китай, др. страны). К настоящему времени в связи с резкими изменениями радиационного состава среды преимущественно вследствие аварий и радиационных воздействий, превышающих фон в той же, что и в естественных аномальных районах, кратности, численность облучаемого населения примерно удвоилась.

К наиболее агрессивным, устойчивым в среде, накапливающимся в пищевых

экологических цепочках с коэффициентом накопления, близким к аналогичным радиационным величинам (103-105 и более), относятся: • хлорорганические пестициды (ДДТ и его аналоги); полихлорированные бифенолы (ПХБ); • тяжелые металлы (особенно ртуть); • диоксид серы, оксиды азота, 3,4 бенз(а)пирен - массивные газоаэрозольные выбросы от сжигания топлива. Отличительной особенностью экосистемного поведения загрязнителей этого ряда является их способность при переходе из первичного звена загрязнения в последующие (например, из атмосферы в почву) превращаться в новые, более токсичные формы. Такие особенности ведут, как правило, к непредсказуемым на основании принятых токсикологических моделей последствиям, проявляющимся с большой инерционностью от момента загрязнения, что может вести к необъективным оценкам действующих факторов.

11.Уменьшение загрязнения отходами окружающей природной среды

Отходы потребления — это отходы, образующиеся в процессе жизнедеятельности человека, не связанной с осуществлением экономической деятельности, отходы, образующиеся в гаражных кооперативах, садоводческих товариществах и иных потребительских кооперативах, а также уличный и дворовый смет, образующийся на территориях общего пользования населенных пунктов.

Отходы производства – это отходы, образующиеся в процессе осуществления юридическими лицами и индивидуальными предпринимателями экономической деятельности (производства продукции, энергии, выполнения работ, оказания услуг), побочные и сопутствующие продукты добычи и обогащения полезных ископаемых.

Коммунальные отходы – это отходы потребления и отходы производства, включенные в перечень отходов, относящийся к коммунальным отходам, удаление которых организуют местные исполнительные и распорядительные органы.

По агрегатному состоянию выделяют твердые и жидкие отходы. Твердые - это твердый компонент отходов. Жидкие - это жидкая фракция отходов. Опасные отходы - содержат в своем составе вещества, обладающие каким-либо свойством или их совокупностью (токсичность, инфекционность, взрывоопасность, пожароопасность, высокая реакционная способность), и присутствующие в таком количестве и виде, при котором они самостоятельно и (или) при вступлении в контакт с другими веществами, могут представлять опасность причинения вреда окружающей среде, здоровью человека и имуществу лиц. Опасные отходы по степени их вредного воздействия на окружающую среду, здоровье человека и его имущество, подразделяются на четыре класса опасности.

В соответствии с нормативно-правовой базой, регулирующей обращение с отходами, выделяют основные принципы политики государства в этой области: • обязательность изучения опасных свойств отходов и установления степени опасности отходов и класса их опасности; • нормирование образования отходов производства, а также установление лимитов их хранения и захоронения; •

использование новейших научно-технических достижений при обращении с отходами; • приоритетность использования отходов по отношению к их или захоронению при условии соблюдения требований законодательства об охране окружающей среды и с учетом экономической эффективности; • приоритетность обезвреживания отходов по отношению к их захоронению; • экономическое стимулирование в области обращения с отходами; • платность размещения отходов производства; • ответственность за нарушение природоохранных требований при обращении с отходами; • возмещение вреда, причиненного при обращении с отходами окружающей среде, здоровью граждан, имуществу; • обеспечение юридическим и физическим лицам, в том числе индивидуальным предпринимателям, доступа к информации в области обращения с отходами. В соответствии с законодательством производители отходов или физическое числе (юридическое лицо, TOM индивидуальный предприниматель, экономическая деятельность, жизнедеятельность которого приводит к образованию отходов) обязаны: • обеспечивать разработку и утверждение нормативов образования отходов производства, а также их соблюдение; обеспечивать установление степени опасности производства и класса опасности опасных отходов производства, если степень опасности этих отходов и класс их опасности не указаны в классификаторе отходов.

Удаление отходов - это деятельность по временному хранению отходов и перевозке их на объектах хранения, захоронения, обезвреживания и (или) на использованию отходов. Удаление TO осуществляется с использованием: • различных механизмов загрузки-выгрузки отходов, характером процесса уплотнения отходов; • не идентичной вместимости кузова: минимусоровозы (7-10 м3), средние (16-45 м3) и большегрузные (более 45 м3). Вывоз ТО в целом по стране осуществляется эффективно, имеются мусоровозы различной вместимости, четко выполняется график транспортировки ТО. Однако, преимущественно вывоз мусора осуществляется на дальние расстояния. Так, средний по стране радиус транспортировки ТО составляет 15 км, а в крупных городах (с населением более 500 тыс.) расстояние возрастает до 20-45 км и более. Хранение отходов – это содержание отходов в местах временного их хранения, на объектах их хранения до перевозки на объекты захоронения, обезвреживания отходов и (или) на объекты по их использованию. Захоронение отходов – это изоляция отходов на объектах захоронения отходов в целях предотвращения их вредного воздействия, продуктов их взаимодействия или разложения на окружающую среду, здоровье граждан, имущество, находящееся в собственности юридических И физических государства, лиц, не предусматривающая возможности их дальнейшего использования. Хранение и захоронение отходов допускаются только в санкционированных местах хранения и захоронения отходов, которые определяются на основе разрешений Министерства природных ресурсов и охраны окружающей среды Республики Беларусь или территориальных органов, а при временном хранении отходов производства для накопления их количества в объеме, необходимом для перевозки, на основании инструкций с указанием периодичности вывоза отходов производства и (или) их допустимого количества. Санкционированные места захоронения отходов — это объекты захоронения отходов, определенные собственнику отходов для их захоронения в соответствии с Законом «Об обращении с отходами». Захоронение вторичных материальных ресурсов запрещается. Объекты захоронения отходов — полигоны и иные сооружения, предназначенные для захоронения отходов. Санкционированные места хранения отходов — это объекты хранения отходов или места временного хранения отходов, определенные собственнику отходов для их хранения. Объекты хранения отходов — сооружения (комплекс сооружений), предназначенные для хранения отходов. Нарушение правил хранения и захоронения радиоактивных, бактериологических, химических веществ и отходов может выражаться в загрязнении окружающей среды вне объектов их размещения.

Обезвреживание отходов – это деятельность, направленная на обработку, сжигание или уничтожение отходов иным способом, в том числе приводящая к уменьшению объема отходов и (или) ликвидации их опасных свойств (за исключением деятельности по захоронению отходов), не связанная с их использованием. Обезвреживание отходов \mathbf{c} применением технологий, приводящих к образованию стойких органических загрязнителей, а также при обезвреживании вторичных материальных ресурсов запрещаются.

При проектировании объектов хранения, захоронения и обезвреживания отходов в проектной документации должны предусматриваться проектные решения по: • созданию сооружений (устройств), учитывающих отходы; • созданию сооружений, ведущих локальный мониторинг окружающей среды в период эксплуатации этих объектов, а для объектов захоронения отходов - и после их вывода из эксплуатации; • выводу из эксплуатации, демонтажу, сносу объектов хранения, захоронения и обезвреживания отходов, а также рекультивации земельных участков, на которых были размещены объекты хранения и обезвреживания отходов, с соблюдением требований законодательства об обращении с отходами, об охране окружающей среды. Кроме того, запрещается размещение объектов хранения, захоронения и обезвреживания отходов на землях природоохранного, оздоровительного, рекреационного и историко-культурного назначения, водного и лесного фондов, а объектов хранения и захоронения отходов - и на землях населенных пунктов.

12.Переработка некоторых видов сортируемых отходов: полимерных отходов; утилизация стеклоотходов; утилизация металлов и сплавов

Вторичная переработка — это рациональные методы утилизации промышленных и бытовых отходов, повторное использование и возвращение в оборот полезных компонентов мусора. В мире актуальным становится внедрение многократных циклов переработки отходов и это связано с рядом факторов: Многие природные ресурсы на планете ограничены в количестве, или возобновляются длительный период времени. Промышленный и бытовой мусор

становятся главными разрушителями экологического баланса целых регионов. Ценные компоненты отходов являются более дешевыми источниками сырья и материалов, чем природные. Кроме того, переработка и утилизация — эффективный инструмент экономики, ведь богатым становится тот хозяин, который бережет и разумно использует данные ему ресурсы.

Виды отходов, имеющих значение для переработки

- Бумага и картон.
- Металлы.
- Стекло.
- Резина.
- Нефтепродукты.
- Электроника.
- Полимеры.
- Древесина.
- Органические отходы.
- Строительный мусор.

Это ценные виды вторичного сырья, переработка которых позволяет изготавливать множество видов продукции.

Вторичная переработка бумаги и картона

Повторное использование отходов бумаги и картона позволяет спасти от вырубки деревья и оздоровить состояние природной среды — целлюлозобумажные комбинаты загрязняют природную среду выбросами в воздух и водоемы. Из вторичного сырья производятся: туалетная бумага, картонные упаковки, строительные материалы.

Вторичная переработка металлов

Самым распространенным видом отходов для вторичной переработки является лом черных металлов, конкретно, чугун. Для переплавки принимается промышленный и бытовой лом чугуна. Большую часть лома чугуна поставляют промышленные предприятия.

Бытовые потребители часто сдают в лом готовые изделия, вышедшие из употребления: ванны, радиаторы, канализационные трубы, садовую мебель, бытовые приборы и утварь – старинные утюги, мангалы, сковороды, ухваты.

Вторичная переработка стекла

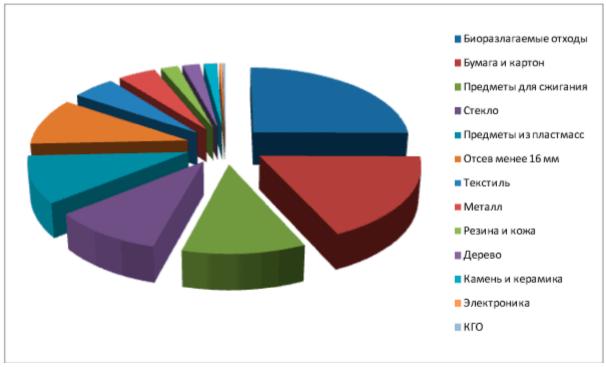
Стекло — материал, который может подвергаться бесконечным циклам рециклинга без потери качества. Утилизация стеклянной тары и боя имеет ряд выгод:

- Экономическую целесообразность.
- Меньшие энергозатраты на выпуск единицы продукции.
- Предпочтительнее с точки зрения урона для окружающей среды.
- Переработка тонны стекла позволяет сэкономить более 600 кг песка, 200 кг известняка и почти 200 кг соды.

Вторичная переработка резины

Большая проблема человечества – утилизация использованных автомобильных покрышек. У нас их часто можно видеть вдоль дорог, под

мостами, в обочинах. В естественных условиях многокомпонентные покрышки разлагаются не одну сотню лет, загрязняя почву, воду и воздух токсическими продуктами распада.


Вторичная переработка полимеров

Изделия из полимеров стали неотъемлемой чертой технического прогресса. Благодаря своим уникальным свойствам эти изделия широко применяются в промышленном производстве и быту. Ежегодно растет число отходов полимеров, которые в естественных условиях практически не разлагаются. Мир идет по пути многократного использования полимеров из промышленного и бытового мусора. Вторичной переработке подвергаются такие виды пластика, как: полиэтилен, полипропилен, полистирол, поливинилхлорид, поликарбонат, полимерные смеси.

Вторичная переработка отходов древесины

В современном производстве, наряду с использованием лесоматериалов, распространена вторичная переработка отходов изготовление на их основе инновационных материалов. Глубокая переработка древесины отличается простотой технологических процессов, стоимостью оборудования, отсутствием необходимости в профессиональном обслуживании. После того, как отобран массив, корни, кора, щепа, горбыль, зеленые ветви и прочее подается на перерабатывающее предприятие. По объему значительно превосходят полезную древесины часть, ОТХОДЫ используется заготовщиками. На площадке отходы сортируются по виду и породе, штабелируют и подают на линии переработки.

Как итог, стоит отметить, что вторичная переработка отходов — необходимое направление хозяйственной деятельности. Иначе мир может задохнуться от нарастающих объемов мусора или впасть в коллапс от недостатка природных ресурсов.

13.Принципы создания малоотходных экологически безопасных технологий на примере производств важнейших химических продуктов

Процессы производства продуктов народного хозяйства остаются малоэффективными по сравнению с природными. Это связано прежде всего с коэффициентом использования сырья. Общие расчеты показывают, что следствием несовершенства является образование отходов, которые при антропогенной деятельности в 2000 раз превосходят происходящие в природе превращения.

Проведенный группой специалистов под руководством академика Б.Н. Ласкорина анализ ряда областей народного хозяйства с позиций разработки малоотходных производств показал единство направлений:

- создание различных типов бессточных технологических систем и водооборотных циклов как для цехов, так и отдельных производств и предприятий целом, что вполне реально при использовании перспективных способов очистки сточных вод; включение водоснабжения производства существующую систему позволяет максимально отказаться от использования поверхностных вод в качестве основного источника свежей воды;
- разработка и незамедлительное внедрение систем переработки всех видов отходов производства и потребления, которые рассматриваются как вторичные материальные ресурсы, доводя качество и приравнивая их ценность к первичным ресурсам;
- создание и внедрение принципиально новых процессов получения традиционных видов продукции на основе комплексной переработки исходного сырья и попутного извлечения и утилизации всех ценных компонентов с целью полного исключения или значительного сокращения технологических стадий, на которых происходит образование основного количества отходов;
- - разработка территориально-промышленных комплексов (кластеров), имеющих замкнутую структуру материальных потоков сырья и отходов.

Отмеченная в первом пункте тенденция к созданию малоотходного производства на базе совершенных водоочистных систем вполне применима и к циркулирующим в производствах газовым потокам.

Следовательно, уменьшить количество вредных выбросов и приблизиться к природным процессам (циклическим), обусловливающим непрерывность (нескончаемость) сырья, возможно при соблюдении указанных направлений.

Из всех направлений наиболее освещаемым в литературе является то, которое связано с разработкой и внедрением технологий и оборудования как локальных, так и общезаводских очистных сооружений, и соответствует идеологии очистки загрязненных стоков «на конце трубы» (end-of-pipe). Данное направление освещено в предыдущих главах данного пособия.

Однако применяемые физические, химические и физикохимические процессы лишь снижают токсичность потоков, а в ряде случаев осуществляют

перевод вредных веществ из одной фазы в другую. Развитие идеологии защиты ОПС привело к идее сокращения отходов в источниках их образования [10].

Сокращение отходов в источниках их образования (СКОВИО) - это система внутризаводских мероприятий, которые уменьшают, предотвращают или ликвидируют образование вредных отходов таким образом, что уменьшают риск для здоровья человека и ОПС. Система предполагает повторное использование ресурсов (рецикл), являющееся неотъемлемой частью данного промышленного процесса (т.е. выступает как «внутренний рецикл»).

Важно подчеркнуть, что, в отличие от мероприятий по снижению отходов, их минимизации, которые носят постфактумный характер (например, сжигание отходов, их захоронение), СКОВИО является предупредительной мерой. Другими словами, СКОВИО выступает единственным методом экологического управления, предотвращающим дальнейшее образование любых отходов.

Идеология и шаги осуществления необходимых товарных продуктов при минимальном образовании отходов развивается, в результате чего представлен подход (по своим деталям он аналогичен идеологии и разработанным в методологии СКОВИО) к проектированию процессов и функционированию промышленных производств, называемый p^2 (сокращение от prevention polution или cleaner production - более чистое производство).

В дальнейшем мы рассмотрим ряд процессов, специфичных для химической отрасли промышленности, которые демонстрируют подходы идеологии СКОВИО и р⁻, позволившие специалистам осуществить «более чистое производство». Прежде всего это - модификация производства.

Убедительным примером этого подхода среди других являются производства окиси этилена и ацетилена.

Так, если синтез окиси этилена, в основе которого лежит реакция Вюрца, складывается из ряда последовательных стадий, каждая из которых приводит к трудноутилизируемым, а порой и неутилизируе- мым продуктам, отраженным в следующих реакциях:

$$Cl_2 + H_2O \Longrightarrow HCl + HOCl,$$

$$CH_2 = CH_2 + HOCl \Longrightarrow CH_2OHCH_2Cl,$$

$$CH_2 = CH_2 + Cl_2 \Longrightarrow CH_2Cl - CH_2Cl,$$

$$2CH_2OH - CH_2Cl + Ca(OH)_2 \Longrightarrow H_2C - CH_2 + CaCl_2 + H_2O.$$

Побочно, а также в соответствии со схемами, в каждой из указанных схемах реакций основных продуктов образовались побочно: хлористый этил, /?/?-дихлордиэтиловый эфир (хлорекс), дихлорэтан, CaC1₂, требующие утилизации.

При разработке способа прямого каталитического окисления этилена кислородом была осуществлена модификация производства, позволившая

избежать образования всей гаммы указанных побочных

$$CH_2 = CH_2 + O_2 \xrightarrow{\stackrel{1}{\longrightarrow}} H_2C \xrightarrow{CH_2} CH_2$$

$$CO_2$$

продуктов:

Не вникая в детали этой технологии (см. с. 105), проблема сводится к подавлению второго направления реакции окисления.

Огромный вклад в загрязнение ОПС среды вносило производство ацетилена, базировавшегося на карбиде кальция и складывающегося из процессов, которые отражены в следующих химических

$$CaCO_3 \longrightarrow CaO + CO_2 - Q$$
,
 $CaO + C \longrightarrow CaC_2 + CO_2 - Q$,
 $CaC_2 + H_2O \longrightarrow Ca(OH)_2 + CH \equiv CH + Q$.

реакциях:

Вносимые в окружающую природную среду, конкретные отходы каждой стадии (ССЬ, $Ca(OH)_2$) - не единственные загрязняющие вещества, генерируемые производством. Опосредственно в атмосферу поступали загрязняющие вещества, обусловленные выработкой необходимой для реакции энергии (реакция 1 и 2). Безусловно, этот компонент вносит в атмосферу оксиды азота и углерода.

Альтернативной «карбидной» технологией выброса ацетилена служит технология прямого синтеза в условиях высших температур из метана.

Предваряя рассмотрение путей *модификации технологии*, следует остановиться на влиянии параметров проведения процесса, которые сказываются на конверсии исходного сырья и селективности.

С точки зрения охраны ОПС выбор параметров процесса должен осуществляться с позиции увеличения селективности, а не конверсии, то есть, прежде всего, технологические параметры должны способствовать не максимальному превращению исходного сырья, а синтезу целевого продукта.

Таким образом, при высшей селективности, но малой конверсии для полноты переработки сырья, наиболее актуальная задача - создание технологического процесса, включающего рециркуляцию - цикличность.

Рециркуляция для большинства процессов позволяет не только увеличить степень конверсии, но и использовать энергию, выделяющуюся в результате экзотермической реакции. Примером такого процесса следует считать синтез метанола (см. с. 99).

Наряду с этим известны технологические процессы, функционирующие в настоящее время, которые не используют электрохимические реакции в связи с небольшим тепловыделением. Примером этому может быть процесс алкилирования бензола с применением в качестве катализатора треххлористого алюминия. Этот процесс протекает при температурах, близких к 96-98°С. Целесообразность аккумулирования этой энергии низка ввиду того, что

теплоноситель (хладагент) для поддержания температуры будет нагрет до $50-60^{\circ}\mathrm{C}$

Но этот же процесс алкилирования разработан на катализаторе фирмы «Бадгер» при 450°С. И в данной технологии за счет разности температур отходящий поток продуктов реакции несет значительный заряд утилизируемой энергии, которую можно использовать для привода насосов и компрессоров.

Увеличение селективности процессов может быть связано и с функционированием оборудования, снижающего диффузионное сопротивление, способствующее протеканию процесса в кинетической области (управление данными процессами более операбельно).

Рециклирование отходов в рамках предприятия. При использовании данного принципа происходит повторное использование побочно получившихся продуктов в результате их превращений. Возьмем в качестве приера производство фенола и ацетона. Так, получающиеся при производстве метилфенилкарбинол и ацетилстирол, подвергнутые гидрированию на разработанных для этого катализаторах, превращаются в изопропилбензол, который включается в рецикл производства фенола и ацетона:

Кооперация методов производства. Ярким примером использования отходов одного процесса в синтезе конечного продукта является метод, заключающийся в синтезе крупнотоннажного продукта - винилхлорида.

Большой проблемой производства винилхлорида дегидрированием дихлорэтана было образование хлористого водорода. Утилизация хлористого водорода путем производства соляной кислоты представляла большие трудности ввиду необходимости многократного разделения хлористого водорода и воды. Причиной этому были загрязняющие хлористый водород продукты разложения углеводорода. Решение проблемы явилось в виде совмещения процессов, отраженных

$$CH_2CI$$
— CH_2CI \longrightarrow $CH_2=CHCI + HCI,$ $CH=CH + HCI \longrightarrow CH_2=CHCI$.

Более распространен в настоящее время процесс получения хлористого винила не на базе ацетилена, а путем оксихлорирования этилена хлористым водородом:

$$CH_2 = CH_2 + 0.5H_2O + HCl \rightarrow CH_2 = CHCl + H_2O$$
.

Схема реакции образования ацетилена была представлена Касселем:

$$CH_4 \rightleftharpoons \dot{C}H_2 + H_2 - 47$$
 Ккал/моль,
 $\dot{C}H_2 + CH_4 \rightleftharpoons C_2H_6 + 36$ Ккал/моль,
 $C_2H_6 \rightleftharpoons C_2H_4 + H_2 - 30$ Ккал/моль,
 $C_2H_4 \rightleftharpoons C_2H_2 + H_2 - 48$ Ккал/моль.

Рассмотрим возможности применения вышеназванных принципов на примерах некоторых производств органического синтеза.

14. Производство окиси олефинов; лактамов; винилхлорида

Окись этилена - простейший представитель окисей. О масштабах мирового производства продукта можно судить по тому, что на его производство расходуется 25 % всего получаемого этилена.

Впервые окись этилена была получена Вюрцем в 1860 году из этиленхлоргидрина действием щелочи:

$$CH_2CI$$
— CH_2OH + $NaOH$ \longrightarrow H_2C — CH_2 + $NaCl$ + H_2O .

экологии хлоргидринный метод не выдерживает критики: позиции многостадиен; сопровождается образованием побочных продуктов, из которых не все могут быть утилизированы или утилизируются с большим трудом, например, HC1; образуется значительное количество сточных вод с содержанием HC1, NaCl. На 1 т окиси этилена образуется 200 кг дихлорэтана, 50 кг (3,(3дихлордиэтилового эфира, 5 кг ацетальдегида. Велик расход хлора и извести. Имеются и другие недостатки, в связи с чем разработанный в 1930 году метод отомкип каталитического окисления настоящему времени К заменил хлоргидринный метод.

Принципиальная схема получения окиси этилена представлена на рис. 34.

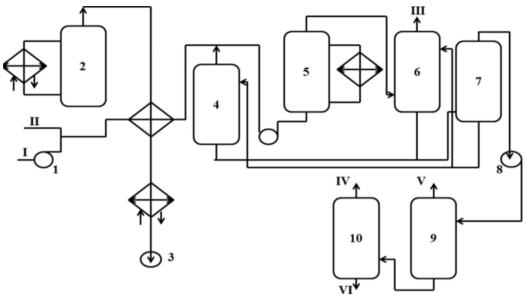


Рис. 34. Технологическая схема производства окиси этилена

Смесь этилена, воздуха, рециркулирующего газа, содержащего 3-5% об. этилена, компримируется компрессором 1 до 22* 10⁵ Па и направляется в контактный аппарат 2 - реактор с неподвижным слоем серебряного катализатора. В промышленных установках используются контактные аппараты с неподвижным и псевдоожиженным слоем катализатора.

Реактор представляет собой кожухотрубный аппарат с трубками из аустенитной стали (поверхность трубок иногда серебрят) диаметром 25-75 мм, что обеспечивает большую скорость прохождения газов и повышает теплоотдачу. Тепло отводится водой или высококипящим органическим теплоносителем. Температура в реакционной зоне достигает 220-250°С. Повышение температуры приводит к глубокому окислению, а при низких температурах катализатор теряет активность.

Выделяющийся из реактора газ охлаждается в теплообменниках и компримируется в аппарате 3. Охлажденный газ направляется в скруббер 4, в котором продукты из реактора орошаются водой. Неабсорбированный газ представляет собой в основном этилен и кислород. Часть этой смеси возвращается в реактор, а другая часть нагревается в теплообменнике и направляется во второй реактор 5, где завершается процесс окисления. Продукты реакции подаются в скруббер 6, где этиленоксид абсорбируется водой.

Несконденсировавшиеся газы подвергаются в дальнейшем очистке. Разбавленные растворы этиленоксида в воде из скрубберов 4 и 6 направляются в отпарную колонну 7 (десорбер), где происходит дальнейшее отделение этиленоксида. Окончательная очистка осуществляется путем ректификации в колоннах 9 и 10.

На процессе неблагоприятно сказывается ряд факторов, приводящих к увеличению количества побочных продуктов, и, как следствие, - росту выбросов в ОПС. К ним относится повышенное содержание в исходном этилене углеводородов и гомологов этилена, которые, сгорая, повышают температуру в реакционной зоне, создавая концентрационные поля. Недопустимо содержание ацетилена, серосодержащих соединений. В этой связи смесь подвергают

предварительному гидрированию на никелевом катализаторе, от серы очищают промывкой щелочью.

В настоящее время окись этилена получают окислением чистым воздухом или кислородом. Первая установка с использованием воздуха была запущена в США в 1937 году. Процесс окисления этилена кислородом был реализован в 1958 году американской фирмой «Шелл Девелопмент». В реактор вводилась смесь 5-30 % об. этилена и 5-10 % об. кислорода.

Селективность образования окиси этилена может быть повышена путем использования серебряного катализатора, промотированного празеодимом, неодимом, тербием или диспрозием. Особенности процесса окисления этилена с использованием чистого кислорода связаны в значительной степени с решением экологических проблем и определяются существеннно меньшим объемом циркулирующего газа. Это позволяет вводить в реактор смесь со значительно большим содержанием этилена, так как потери его с отходящими газами незначительны.

Окисление смеси, богатой этиленом, можно проводить с более высокой селективностью при низкой конверсии. Производительность катализатора при окислении этилена чистым кислородом выше. В процессе можно окислять также смесь, обогащенную кислородом для поддержания высокой селективности образования смеси этилена, для чего реакционная смесь разбавляется метаном. Добавка метана приводит к сужению области пожаро- и взрывоопасных концентраций.

Рациональным решением экологического плана следует считать процесс совмещенного получения окиси этилена и моноэтиленгликоля. Эта схема позволяет значительно снизить количество стоков. По этой схеме абсорбент из аппарата 10 рециркулирует в абсорбционную колонну. В замкнутом цикле между отпарной и абсорбционными колоннами происходит накопление воды за счет конденсации водяного пара, используемого для выделения окиси этилена. В связи с этим часть воды по обычной схеме сбрасывают в стоки. Однако вместе со стоками теряется некоторое количество (1-3 % об.) этиленгликолей. Кроме того, очистка стоков представляет собой сложную задачу.

Особенностями усовершенствования процесса является сбалансированный стадиях выделения окиси этилена получения расход воды моноэтиленгликоля. Поддержание водного баланса между абсорбционной и отпарной колоннами позволяет исключить сброс сточных вод, содержащих этилена, и обеспечивает получение растворенную окись высокочистого моноэтиленгликоля, пригодного для производства полиэфиров.

Производство лактамов

Наибольший объем производства из лактамов принадлежит е-капролактаму. Около 60 % производимого за рубежом е-капро- лактама получают из гексана. В последнее время в США наблюдается тенденция его производства из фенола.

- В России делается акцент на использование толуола для производства е-капролактама. Процесс синтеза при этом проходит определенные стадии.
- 1) Окисление толуола в бензойную кислоту. Реакция окисления гомогенно-

каталитическая. В реактор подают толуол и раствор катализатора на основе солей кобальта (ацетат или бензоат кобальта), и осуществляется барботирование воздухом как окислителем. Оптимальная температура процесса - 165°C, давление в системе поддерживается равным 1 МПа:

$$C_6H_5CH_3 + 1,5O_2 \rightarrow C_6H_5COOH + H_2O + Q$$

2) *Гидрирование бензойной кислоты* - процесс гетерогеннокаталитический. В качестве катализатора используется палладий на активированном угле с содержанием палладия 5 % по массе:

$$C_6H_5COOH + 3H_2 \xrightarrow{Pd} C_6H_{11}COOH$$
.

Парциальное давление водорода поддерживается равным 1 Па. Температура реакции - 170°С. При более высокой температуре возрастает скорость образования оксида углерода, который является ядом для катализатора, содержание его не должно превышать 10 ppm.

3) Нитрозирование циклогексан карбонов ой кислоты:

$$C_6H_5COOH + NOHSO_4 \rightarrow N\cdot H + CO + H_2SO_4$$

Перед реакцией нитрозирования циклогесанкарбоновая кислота смешивается с олеумом. Смесь подается в многоступенчатый горизонтальный реактор. В каждую камеру (ступень) вводится нитрозилсер- ная кислота. Реакция протекает с большим выделением тепла. Для снятия тепла добавляется циклогексан, испарением которого и достигается постоянная температура, равная 80°С.

Процесс лактамизации складывается из последовательно протекающих реакций нитрозирования, декарбоксилирования и атомной перегруппировки. В результате образуется серно-кислый эфир капролактама.

Химические реакции процесса следующие:

1. Образование оксокарбониевого иона из циклогексакарбоно- вой кислоты под воздействием олеума:

COOH
$$H + H_2SO_4 \rightarrow H \cdot H\overline{SO}_4 \xrightarrow{+SO_4} H \cdot H\overline{SO}_4$$

2. Нитрозирование, осуществляемое при взаимодействии оксокарбониевого иона с нитрозилсерной кислотой, находящейся в условиях реакции, в ионной форме:

3. Декарбоксилирование нитрозосоединения циклогексанкарбо- новой кислоты и перегруппировка с образованием серно-кислого эфира капролактама:

$$NO + HSO_4 \rightarrow NO + CO_2$$
.

С целью полного использования нитрозилсерной кислоты в реакционной смеси поддерживается избыток циклогексанкарбоновой кислоты. В серно-кислую массу после реакции лактамизации добавляется вода. Между капролактамом, протонированным серной кислотой, и водой устанавливается равновесие:

$$OSO_3H + H_2O + H_2SO_4.$$

Циклогексанкарбоновая кислота, не вступившая в реакцию, извлекается гексаном, в то время как серно-кислая соль капролактама остается в водном растворе.

Таким образом, после разбавления водой получаются две не- смешивающиеся жидкие фазы: легкая фаза, состоящая из циклогексана и циклогексанкарбоновой кислоты, и тяжелая (водная) - из капролактама с серной кислотой. Легкая фаза возвращается в процесс, а тяжелая поступает на дальнейшую обработку для выделения капролактама. С этой целью смесь обрабатывается газообразным аммиаком. Выделяющиеся тепло процесса используется для упарки водных растворов образующегося сульфата аммония. Во время операции образующаяся легкая фаза, состоящая из так называемого лактамного масла, всплывает на поверхность маточного сульфата аммония. Лактам- ное масло поступает на следующую стадию - очистку.

Большая часть побочных продуктов, приводящая к экологическим проблемам, выделяется на стадии очистки лактамного масла. Операция очистки состоит в удалении побочных продуктов, делящихся на полярные и неполярные.

Полярными являются сульфоновые производные циклогексанкарбоновой кислоты. Побочные продукты выделяются из лактамного масла каустификацией (обработкой NaOH). Извлечение капролактама осуществляется экстракцией толуолом. Наряду с капролактамом в толуол переходят примеси, имеющие неполярный характер. Соли, образовавшиеся на стадии каустификации, выводятся из процесса с водным остатком после толуольной экстракции. Водный остаток подается в печь сжигания.

Неполярные примеси типа гексагидробензамида превращаются на стадии гиппохлоритной очистки в соответствующие амины, плохо растворимые в воде. На данном свойстве основано отделение этих субпродуктов от капролактама на стадии водной экстракции. Толуол, содержащий примеси, подвергается ректификации. Очищенный толуол возвращается на эксплуатацию. Кубовые остатки подаются в печь сжигания.

Производство винилхлорида

Хлористый винил является одним из важных продуктов, находящим применение как в производстве винилхлорида, так и сополимера при синтезе пластических масс с винилацетатом, хлористым винил- диеном и другими мономерами. Хлорированием полимера получают перхлорвиниловую смолу, которая хорошо растворяется в органических растворителях и широко используется в качестве лаков и эмалей.

Синтезированный в 1835 году хлористый винил в настоящее время получается согласно трем реакциям:

- гидрохлорированием ацетилена:

$$CH \equiv CH + HCl \rightarrow CH_2 = CHCl;$$

- дегидрохлорированием трихлорэтана:

$$CH_2CI \longrightarrow CH_2=CHCI + HCI$$
;

- окислительным гидрохлорированием этилена:

$$CH_2 = CH_2 + 0.5O_2 + HC1 \rightarrow CH_2CI - CH_2CI + H_2O.$$

Гидрохлорирование ацетилена - процесс каталитический, причем используется исключительно токсичная сулема, что уже свидетельствует о неэкологичном производстве. В контактном способе в продукте, выходящем из реактора, на 93 % хлористого винила приходится 5 % хлористого водорода, 0,5 % ацетилена, 0,3 % нессиметрич- ного дихлорэтана и 0,3 % ацетальдегида. Для получения 1 т хлористого винила расходуется 0,45 т ацетилена, 0,63 т хлористого водорода и 0,2-0,5 кг сулемы.

Нельзя отнести к малоотходным и производство хлористого винила путем дегидрирования дихлорэтана 42 % щелочью (NaOH). Выход продукта составляет 80 % от загруженного дихлорэтана. На 1 т хлористого винила расходуется 0,82 т твердой щелочи, а поскольку процесс ведется в спиртовом растворе, то расход спирта (этанола или метанола) составляет 92 кг.

В мировой практике распространен метод пиролитического (480-500°С) дегидрирования дихлорэтана, который позволяет получить 97-98 % хлористого винила от теоретически возможного. Способ не требует затрат на вспомогательные материалы и реагенты, а количество отходов, соответственно, снижается.

С целью снижения отходов, а именно к ним следует отнести образующийся хлористый водород, производства хлористого винила из дихлорэтана и окислительного гидрохлорирования совмещали. Таким образом, хлористый водород, выделяющийся в процессе дегидрирования дихлорэтана, далее использовался для гидрохлорирования ацетилена.

Более совершенной (с меньшим количеством образования отходов) может служить так называемая сбалансированная схема с использованием хлористого водорода для синтеза дихлорэтана.

В процессе протекают реакции, результатом которых является образование единственного продукта - винилхлорида. Часть дихлорэтана в этом производстве получают прямым хлорированием этилена в жидкой фазе:

$$CH_2 = CH_2 + Cl_2 \rightarrow CH_2Cl - CH_2Cl$$
.

Другую часть получают по реакции окислительного хлорирования. Для этого образующийся хлористый водород в результате крекинга дихлорэтана смешивают с кислородом и этиленом. Окислительное гидрохлорирование протекает в присутствии катализаторов, содержащих хлорид меди на носителе. Катализатор может находится в стационарном или псевдоожиженном состоянии.

По схеме фирмы «Монсайто» (рис. 35) смесь этилена (поток I) с хлором (II) и газами рецикла (III) вводят в реактор прямого хлорирования 1. Хлорирование этилена осуществляют в жидком дихлорэтане. Продукт на выходе из реактора промывают раствором щелочи (IV) в колонне 2 для удаления непрореагировавшего хлора. Не прореагировавший этилен (V) отводится в верхней части колонны. Промывную жидкость сбрасывают в стоки (VI).

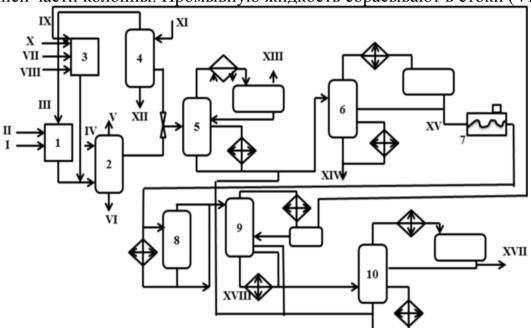


Рис. 35. Технологическая схема синтеза хлористого винила

В реакторе 3 протекает оксихлорирование этилена (VII) смесью хлористого водорода с кислородом или воздухом (VIII). При этом используют хлористый водород (IX), выделившийся в процессе крекинга дихлорэтана. В случае необходимости в реактор добавляют свежий хлористый водород (X). Газообразную смесь на выходе из реактора оксихлорирования конденсируют и подают в сепаратор.

Жидкий продукт промывают в колонне 4 раствором щелочи (XI) для нейтрализации слабого раствора соляной кислоты, которая образуется при растворении хлористого водорода в водном конденсате. Промывную жидкость (XII) отводят в стоки, а несконденсировавший- ся газ (III) направляют в реактор прямого хлорирования.

Далее дихлорэтан-сырец, полученный хлорированием и окси-хлорированием этилена, объединяют и подают на очистку. В ректификационных

колоннах 5 и 6 из дихлорэтана-сырца последовательно выделяют легкокипящие примеси (XIII) и тяжелые хлорсодержащие побочные продукты (XIV). Очищенный дихлорэтан (XV) подвергают химическому крекингу в печи 7. Промывную жидкость (XII) отводят в стоки, а несконденсировавшийся газ (III) направляют в реактор прямого хлорирования.

Далее дихлорэтан-сырец полученный хлорированием и оксихло- рированием этилена, объединяют и подают на очистку. В ректификационных колоннах 5 и 6 из дихлорэтана-сырца последовательно выделяют легкокипящие примеси (XIII) и тяжелые хлорсодержащие побочные продукты (XIV). Очищенный дихлорэтан (XV) подвергают химическому крекингу в печи 7.

Продукт крекинга дихлорэтана закаливают в колонне 8, после чего вводят в колонну 9, где отгоняют сухой хлористый водород. Выделенный хлористый водород (LX) рециркулирует в реактор оксихлорирования, либо его отводят в виде побочного продукта (XVI). Кубовый остаток отпарной колонны 9 подают на ректификацию. В виде дистиллята из колонны 10 отбирают товарный винилхлорид (XVII), а кубовую жидкость (XVIII), содержащую непрореагировавший дихлорэтан, возвращают в систему очистки для удаления тяжелых примесей.

Описанный процесс характеризуется высоким выходом целевого продукта, отсутствием коррозии температуры, низкой стоимостью катализатора, образованием небольшого количества сточных вод и медленным накоплением кокса. При использовании в качестве окислителя при оксихлорировании кислорода вместо воздуха значительно снижаются газовые выбросы (примерно в сто раз). Обезвреживание отходов хлорорганических продуктов методом сжигания (терморазложение) наиболее радикально.

Один из процессов, отнесенных к технологии производства винилхлорида, связан с переработкой хлорорганических отходов в струе низкотемпературной плазмы. Этот способ позволяет использовать вторичные материальные ресурсы. Исследования, проведенные с отходами ди- и трихлорэтана, хлористого этила, третбутилхлорида, три- хлоризобутилена и другими в струе смеси водорода и метана, дали смесь хлористого водорода с ацетиленом, которая может быть использована в производстве винилхлорида.

16.Производство ароматических соединений и описание технологических процессов, используемых в настоящее время

Современное промышленное производство ароматических углеводородов основано на процессах переработки нефтяных фракций и в меньшей степени на процессах коксования каменных углей.

Современное промышленное производство ароматических углеводородов основано на процессах переработки нефтяных фракций и в меньшей степени на процессах коксования каменных углей.

Выход ароматических углеводородов при коксовании угля составляет 0,8 -1,5 % от сухой шихты.

В нефтеперерабатывающей промышленности ароматические углеводороды - бензол, толуол, изомеры С8, триметилбензолы и другие выделяются из продуктов каталитического риформинга бензиновых фракций, а также пиролиза газообразных и жидких углеводородов.

Кроме ароматических углеводородов образуются другие топливные и нефтехимические продукты:

- на процессах риформинга углеводородные газы, бензин, технический водород,
 - при пиролизе этилен, пропилен, бутилены.

химической потребности промышленности ароматических углеводородах привел к разработке специальных технологических процессов: выделения ароматических углеводородов из их смесей с парафиновыми, ректификации, нафтеновыми углеводородами, азеотропной, экстрактивной этилбензола экстракции, разделения пара-, орто-, метаксилолов кристаллизацией, ректификацией, адсорбцией и экстракцией.

Наибольшее применение в органическом синтезе находит бензол.

Для увеличения его выработки разработаны специальные методы его производства - деалкилирование ароматических углеводородов и диспропорционирование толуола.

В США 20% толуола используется на производство бензола, 20% - для химического синтеза, остальной толуол - как высокооктановая добавка к бензину.

Нефтяной ксилол - смесь 4^x изомеров C_8 используется в основном (75%) для получения изомеров, остальное количество - как растворитель и компонент бензина. Наиболее применимы из изомеров C_8 орто- и параксилол, другие изомеры C_8 превращаются в орто- и параксилол путем каталитической изомеризации.

Большая часть ароматики С₉ используются как компонент автобензина, возможно использование для получения смол. Ароматика С10 используется в производстве полиамидов, смол, лаков, пластификаторов.

Применение ароматических углеводородов становится все разнообразнее, так как они обладают высокой реакционной способностью в реакциях замещения.

Это позволяет получать на их основе различные технически ценные производные: синтетические материалы с повышенной термической

стабильностью и механической прочностью, высокими диэлектрическими характеристиками, широкий ассортимент физиологически активных веществ и красителей, разнообразные стабилизаторы.

Среди новых направлений - быстро растущее производство технического углерода, графита, графитового волокна из смесей полициклических ароматических углеводородов.

Основные типы процессов производства ароматических углеводородов

Сырьем для производства ароматических углеводородов через процесс каталитического риформинга служат бензиновые фракции прямой перегонки нефти с различными интервалами кипения:

- для получения бензола фракция 62-85 °C (60-85 °C)
- для получения толуола фракция 85-105 °C (85-110 °C)
- для получения ксилолов фракция 105-140 °C (120-140 °C)

При риформинге широкой фракции 62-140 °C получают смесь различных ароматических углеводородов.

На алюмомолибденовых катализаторах выход ароматики составляет 25-30 %.

Платиновые катализаторы (0,4-0,65 % Pt) на алюмооксидных носителях бифункциональны.

Окись алюминия Al_2O_3 вследствие амфотерности способствует реакции гидрогенизации и гидрокрекинга, а платина - реакции дегидрирования.

Поэтому выход ароматики поднялся до 35-40%.

Российские катализаторы риформинга АП-64, АП-56 промотированы фтором и хлором для поддержания активности.

Использование платиновых катализаторов требует тщательной подготовки сырья, так как наличие в нем примесей кислород-, серу- и азотсодержащих соединений приводит к быстрой потере активности и селективности катализатора.

Жидкие продукты каталитического риформинга содержат смесь ароматических углеводородов с парафиновыми и нафтеновыми.

Для выделения из них ароматики используют процессы экстракции гликолями, сульфоланом, N - метилпирролидоном, что позволяет получить продукты высокой чистоты - выше 95% от их потенциала в сырье экстракции.

Для увеличения выхода бензола целесообразно подвергать риформингу прямогонную бензиновую фракцию 62-140 °C, а получающийся толуол деметилировать.

Для увеличения выхода ксилолов комбинируют установки риформинга с процессом трансалкилирования толуола и ароматики C_9 .

Дальнейшее увеличение выхода ароматики можно достигнуть дегидроциклизацией нормальных парафиновых углеводородов C_6 - C_8 , выделенных из бензина прямой перегонки или рафинатов каталитического риформинга.

Быстрый рост производства пластмасс и синтетических волокон вызвал необходимость развития крупнотоннажных производств орто- и параксилолов.

Для увеличения их выработки разработан процесс изомеризации этилбензола и метаксилола, идущий в среде водорода.

Ортоксилол затем выделяют ректификацией, а для выделения параксилола используют низкотемпературную кристаллизацию и адсорбцию.

Современное производство ароматических углеводородов основано на бензинах прямой перегонки.

Рациональное распределение бензиновых фракций и развитие различных процессов производства ароматики позволяет выпускать требуемое количество ее, не снижая качества других продуктов нефтепереработки.

Идентификатор материала		Описание	Примеры
△ 1 PET	PET(E)	Полиэтиленгерефталат (лавсан)	Полиэстер, бутылки для безалкогольных напитков
O2 PE-HD	PEHD (HDPE)	Полиэтилен высокой плотности (ПЭВП)	Пластиковые бутылки, пакеты, мусорные вёдра
203 PVC	PVC (V)	Поливинилхлорид (ПВХ)	Оконные рамы, бутылки для химических продуктов, покрытия для полов
O4 PE-LD	PELD (LDPE)	Полиэтилен низкой плотности (ПЭНП)	Пакеты, вёдра, трубы
<u>م</u>	PP	Полипропилен	Автомобильные бамперы, внутренняя отделка автомобилей, корпуса электроинструмента, упаковка из под шоколадок, макарон, пластиковые стаканчики
△ 66 PS	PS	Полистирол	Игрушки, одноразовая посуда, цветочные горшки, видеокассеты, чемоданы
ۿ	o	Прочие пластмассы	Полиуретан[9], поликарбонат, Полиамиды
ABS	ABS	Акрилонитрилбутадиенстирол (АБС)	Корпуса мониторов и телевизоров, кофеварки, мобильные телефоны, корпуса электроинструмента

Ароматические соединения - циклические органические соединения, которые имеют в своем составе ароматическую систему.

Основными отличительными свойствами являются повышенная устойчивость ароматической системы и склонность к реакциям замещения, а не присоединения.

Различают бензоидные (арены и структурные производные аренов, содержат бензольные ядра) и небензоидные (все остальные) ароматические соединения.

Среди небензоидных ароматических соединений хорошо известны азулен, аннулены, гетарены (пиридин, пиррол, фуран, тиофен), ферроцен.

Известны и неорганические ароматические соединения, например боразол («неорганический бензол»).

Большое практическое значение имеют бензоидные ароматические углеводороды (арены), содержащие кроме бензольных колец и другие углеводородные группы (алифатические, нафтеновые, полициклические).

Основным источником получения ароматических углеводородов служат каменноугольная смола, нефть и нефтепродукты, а также синтетические технологии.

Наиболее важными аренами являются: бензол C_6H_6 и его гомологи (толуол $C_6H_5CH_3$, ксилолы $C_6H_4(CH_3)_2$, дурол, мезитилен, этилбензол), кумол, нафталин $C_{10}H_8$, антрацен $C_{14}H_{10}$ и их производные.

Ароматические углеводороды - исходное сырье для промышленного получения кетонов, альдегидов и кислот ароматического ряда, и других веществ.

Литература

- 1. Семенова И.В. Промышленная экология. Учебник для студ. высш. учеб. Заведений. М.: Издательский центр «Академия», 2009. 528 с.,
- 2. Федяева О.А. Промышленная экология: Конспект лекций. Омск: Изд-во ОмГТУ, 2007. 145 с.
- 3. Калыгин В.Г. Промышленная экология. Курс лекций. М.: Изд-во МНЭПУ, 2010. 240 с.
- 4. Брюхань, Ф.Ф. Промышленная экология. М., 2011
- 5. Голицын, А.Н. Промышленная экология и мониторинг загрязнения природной среды.- М., 2010
- 6. Промышленная экология. М.; Ростов н/Д, 2011
- 7. В.В. Садовский, М.В. Самойлов, Н.П. Кохно. Производственные технологии: учебник. Минск: БГЭУ, 2008. 431 с.
- 8. Голицын, А.Н. Основы промышленной экологии. М., 2007
- 9. Хван, Т.А. Промышленная экология. Ростов н/Д, 2003
- 10. Гридэл, Т. Е. Промышленная экология. М., 2004
- 11. Андреева, Е.С. Промышленная экология. СПб, 2005

Интернет-ресурсы:

- 1. http://energo.gov.kz
- 2. Официальный сайт Президента РК Н.А. Назарбаева http://www.akor da.kz/. Выступление Президента РК на первом Казахстанском конгрессе по минеральным ресурсам и металлургии. 30.06.2010, Астана.
- 3. www. kap. kz/kap/?q=node/25. К проекту Закона Республики Казахстан "Об отхолах"